Joins: A Case Study in Modular Specification of
a Concurrent Reentrant Higher-order Library

Kasper Svendsen', Lars Birkedal®, and Matthew Parkinson?
! IT University of Copenhagen, {kasv,birkedal}@itu.dk
2 Microsoft Research Cambridge, mattpark@microsoft.com

Abstract. We present a case study of formal specification for the C¥
joins library, an advanced concurrent library implemented using both
shared mutable state and higher-order methods. The library is specified
and verified in HOCAP, a higher-order separation logic extended with a
higher-order variant of concurrent abstract predicates.

1 Introduction

It is well-known that modular specification and verification of concurrent higher-
order imperative programs is very challenging. In the last decade good progress
has been made on reasoning about subsets of these programming language fea-
tures. For example, higher-order separation logic with nested triples has proved
useful for modular specification and verification of higher-order imperative pro-
grams that use state with little sharing, e.g., [23, 16, 15]. Nested triples support
specification of higher-order methods and higher-order quantification allows li-
brary specifications to abstract over the internal state maintained by the library
and the state effects of function arguments.

Likewise, concurrent abstract predicates [7] has proved useful for reasoning
about shared mutable data structures in a concurrent setting. Concurrent ab-
stract predicates (CAP) extends separation logic with protocols governing access
to shared mutable state. Thus CAP supports modular specification of shared mu-
table data structures that abstract over the internal sharing, e.g., [5]. However,
CAP does not support modular reasoning about external sharing — the sharing
of other mutable data structures through a shared mutable data structure. For
instance, CAP does not support modular reasoning about locks® — the canonical
example of a shared mutable data structure used to facilitate external sharing.

We have recently proposed HOCAP [26], a new program logic which combines
higher-order separation logic with concurrent abstract predicates and extends
concurrent abstract predicates with state-independent higher-order protocols. To
reason about external sharing through a data structure, we parameterise the
specification of the data structure with assertions that clients can instantiate to
describe the resources they wish to share through the data structure. Higher-
order protocols allow us to impose protocols on these external resources when

3 See Section 6 for a discussion of this issue.

reasoning about the implementation of the data structure. State-independent
higher-order protocols allow us to reason about non-circular external sharing
patterns.

HOCAP is thus intended as a general purpose program logic for modular
specification and verification of concurrent higher-order imperative programs
with support for modular reasoning about both internal and external sharing.
We have previously verified simple examples in HOCAP. In this paper we report
on an extensive case study of a sophisticated and realistic library that combines
all these challenges in one, to test whether HOCAP can in fact be used to give
an abstract formal specification.

In particular, we explore how to give a modular specification to a concurrent
library that features internal sharing and is used to facilitate external shar-
ing. Clients interact with the library using reentrant callbacks. The specification
should thus abstract over the internal state while allowing abstract reasoning
about external sharing through the library and reentrant calls back into the li-
brary. Furthermore, the specification should of course be strong enough to reason
about clients, and weak enough to allow the implementation of the library to be
verified against the specification.

Our case study of choice is the C* joins library [20]. The joins library, which is
based on the join calculus [8, 9], provides a declarative concurrency model based
on message passing. Declarative message patterns are used to specify synchro-
nisation conditions and function arguments are used to specify synchronisation
actions. Synchronisation actions might themselves cause new messages to be sent,
leading to reentrant callbacks. The joins concurrency model is useful for defining
new synchronisation primitives — i.e., to facilitate external sharing. Finally, the
library itself is implemented using internal state.

In this paper we present a formal specification of a subset of the C¥ joins
library in HOCAP. The specification is expressed in terms of the high-level join
primitives exposed by the library and hides all internal state from clients. More-
over, we test the specification of the joins library by verifying a number of syn-
chronisation primitives for which there are already accepted specifications in the
literature. For example, we verify that a reader-writer lock implemented using
joins can be proved to satisfy the standard separation logic specification for a
reader-write lock. We have chosen to focus on synchronisation primitives because
synchronisation primitives are specifically designed to facilitate external sharing.

In addition to its role as a case study of a higher-order reentrant concurrent
library, the specification of the joins library is itself interesting. The main idea
behind the specification is to allow clients of the joins library to impose ownership
transfer protocols at the level of the join primitives exposed by the library.
As illustrated with several examples, this leads to natural and short proofs of
synchronisation primitives implemented using the joins library.

We have also verified a simple lock-based implementation of the joins library.
However, in this paper we focus on the joins specification and the use thereof,
since the main point is to investigate how HOCAP can be used to give ab-
stract specifications for concurrent higher-order imperative libraries. We refer

the interested reader to the accompanying technical report for details about the
verification of the joins implementation [25]. This paper does not require the
reader to understand all the details of HOCAP.

Outline. The remainder of the paper is organised as follows. In Section 2
we give an extensive introduction to the joins library using a series of examples
to explain each feature of the library. Along the way, we sketch how one can
reason informally, in separation-logic style, about the correctness of the appli-
cations. In Section 3 we summarise the necessary bits of HOCAP. This leads
us to Section 4, where we introduce the formal specification of the joins library.
In Section 5 we revisit a couple of the example applications and show how the
informal proof sketches from Section 2 can be turned into formal proofs using
the formal specification from Section 4. Finally, we evaluate and discuss the case
study in Section 6.

2 Introducing joins

The joins concurrency model is based on the concept of messages, which are used
both for synchronisation and communication between threads. Conceptually, a
join instance consists of a single message pool and a number of channels for
adding messages to this pool. Channels come in two varieties, synchronous and
asynchronous. Sending a message via a synchronous channel adds the message
to the message pool and blocks the sender until the message has been received.
Asynchronous channels simply add messages to the message pool, without block-
ing the sender.

The power of the joins calculus stems from how messages are received. One
declares a set of chords, each consisting of a pattern (a condition on the message
pool) and a continuation. When a pattern matches a set of messages in the
message pool, the chord may fire, causing the continuation to execute. Crucially,
once a chord fires, the messages that matched the pattern are removed from
the message pool atomically, making them unavailable for future matches. Upon
termination of the continuation, the clients that added the removed messages
via synchronous channels are woken up and allowed to continue. We say that a
message has been received when it has been matched by a chord and the chord
continuation has terminated.

In the rest of this section we introduce the C# joins library, one feature at
a time. Each new feature is introduced with a joins example of a synchronisa-
tion primitive implemented using this feature. For each example, we sketch an
informal proof of the synchronisation primitive in separation logic. The exam-
ples thus serve both to introduce the joins library and motivate the main ideas
behind our formal specification of the joins library.

We take as a starting point Russo’s joins library for C* [20], with a slightly
simplified API. In particular, we have omitted value-carrying channels, as value-
carrying channels do not add any conceptual difficulties.

2.1 Synchronous channels

Sending a message via a synchronous channel causes the sender to block until the
message has been received. To illustrate, we consider the example of a 2-barrier
— an asymmetric barrier restricted to two clients.

Implementation. One can implement a 2-barrier as a joins instance with
two synchronous channels — one for each client to signal its arrival. Clients should
block at the barrier until both clients have signalled their arrival. This can be
achieved with a single chord with a pattern that allows it to fire when there is
a pending message on both channels (i.e., when both clients have arrived). The
C* code for a 2-barrier is given in Figure 1.

The TwoBarrier constructor creates
a join instance, j, and two synchronous 1ass TwoBarrier {
channels, chl and ch2, attached to the private SyncChannel chi;
underlying message pool of this join private SyncChannel ch2;
instance. Next, the constructor cre-
ates a pattern p that matches any pair public TwoBarrier() {
of messages in the message pool con- Join j = new Join();
sisting of a chl message (i.e., a mes- chl = new SyncChannel(j);
sage added via the chl channel) and ch2 = new SyncChannel(j);

a ch2 message. Lastly, it registers this Pattern p = j.When(ch1).And(ch2);
pattern as a chord without a continua- p-Do();

tion. Hence, this chord may fire when }

there is a pending message on both public void Arrivel() { ch1.Call(
channels and when it fires, it atom- public void Arrive2() { ch2.Call(
ically removes and receives these two 1}
messages from the message pool. Each
Arrive method signals the client’s ar-
rival by sending a message on the cor-
responding channel using the Call method.

All the examples we consider in this article follow the same structure as the
above example: the constructor creates a join instance with accompanying chan-
nels and registers a number of chords. After this initialisation phase, the chords
and channels stay fixed and interaction with the joins instance is limited to the
sending of messages.

)}
)i}

1

Fig. 1. Joins 2-barrier implementation.

We now sketch a proof of this 2-barrier implementation using separation
logic. Recall that separation logic assertions, say P and @, describe and assert
ownership of resources and that P x @ holds if P and @ describe (conceptually)
disjoint resources. The logic will be introduced in greater detail in Section 4
when we get to the formal specification and formal reasoning.

Desired specification. From the point of view of resources, a barrier al-
lows clients to exchange resources. We call these resources external as they are
typically external to the barrier data structure itself. On arrival at the barrier
each client may transfer ownership of some resource to the barrier, which is then
redistributed atomically once both clients have arrived. For the purpose of this

introduction we will make the simplifying assumption that each client transfers
the same resource to the barrier on each arrival and that these resources are
redistributed in the same way at each round of synchronisation. In Section 5.2
we consider a general specification without these simplifying assumptions.

Under these assumptions we can specify the barrier in terms of two predi-
cates, Bi" and B2, where Bi" describes the resources client i transfers to the
barrier upon arrival, and B{"* describes the resources client ¢ expects to receive
back from the barrier upon leaving. These predicates thus describe the external
resources clients intend to share through the barrier. Since a barrier can only
redistribute resources (i.e., it cannot create resources out of thin air), the com-
bined resources transferred to the barrier must imply the combined resources
transferred back from the barrier: Bi" x B = B4t x Bgut,

The client of the barrier is thus free to pick any BI" and B predicates
satisfying the above redistribution property. We can now express the expected
specification of a 2-barrier b in terms of these abstract predicates:

(B} b Arrivel() {B3"} {B3'} bAmive2() {B5"}

That is, for client 1 to arrive at the barrier (i.e., to call Arrivel), it has to provide
the resource described by Bi", and if the call to Arrivel terminates (i.e., client 1
has left the barrier), it will have received the resource described by BS“t.

Proof sketch. The main idea behind our specification of the joins library
is to allow clients to impose an ownership transfer protocol on messages. An
ownership transfer protocol consists of a channel precondition and a channel
postcondition for each channel. The channel precondition describes the resources
the sender is required to transfer to the recipient when sending a message on
the channel. The channel postcondition describes the resources the recipient is
required to transfer to the sender upon receiving the message.

In the 2-barrier example, sending a message on a channel corresponds to
signalling one’s arrival at the barrier. The channel preconditions of the barrier
thus describe the resources clients are required to transfer to the barrier upon
their arrival. Hence, we take each channel precondition to be the corresponding
B™ predicate: Py = Bil" and P = Bi2”. Throughout this section we use the
notation P to refer to the channel precondition of channel ch and Q¢ to refer
to the channel postcondition.

The barrier implementation features a single chord that matches and receives
both arrival messages, once both clients have arrived. The channel postconditions
of the barrier thus describes the resources the barrier is required to transfer
back to the clients, once both clients have arrived. We thus take each channel
postcondition to be the corresponding B°* predicate: Qe = B and Qcn2 =
B,

One can thus think of the channel pre- and postconditions as specifications
for channels. Since the channel postcondition describes the resources transferred
back to the sender once its message has been received, one should think of
it as a partial correctness specification. In particular, without any chords to
receive messages on a given channel we can pick any channel postcondition, as
no message sent on that channel will ever be received. Conversely, whenever

we add a new chord we have to prove that it satisfies the chosen ownership
transfer protocol. For chords without continuations, this reduces to proving that
the preconditions of the channels that match the chord’s pattern imply the
postconditions of these channels.

The 2-barrier consists of a single chord that matches any pair of messages
consisting of achl message and ach2 message. Correctness thus reduces to proving
Pen1*Pena = Qch1*Qch2, which follows from the assumed redistribution property.

2.2 Asynchronous channels

The previous example illustrated the use of synchronous channels that block the
sender until its message has been received. The joins library also supports asyn-
chronous channels, allowing messages to be sent without blocking the sender.
A lock is a simple example that illustrates the use of both asynchronous and
synchronous channels. Acquiring a lock must wait for the previous thread using
the lock to finish: it is synchronous. However, releasing a lock need not wait for
the next thread to attempt to acquire it: it is asynchronous.
Implementation. We can implement a lock using the joins library as follows:
We use two channels acq and rel
to represent the two actions one can

o class Lock {
perform on a lock. The join instance private SyncChannel acq;

has a single chord with a pattern that private AsyncChannel rel;
matches any pair of messages con-

sisting of an acq message and a rel public Lock() {

message. Thus, to acquire the lock, Join j = new Join();

a thread sends a message on the acq acq = new SyncChannel(j);
channel; the call will block until the rel = new AsyncChannel(j);

chord fires, which can only happen if j-When(acq).And(rel). Do();

there is a rel message in the message rel.Call();
pool. The lock is thus unlocked if and }
only if there is a pending rel message public void Acquire() { acq.Call(); }
in the message pool. The release can pyplic void Release() { rel.Call(); }
happen asynchronously; it does not }
have to wait for the next thread to
attempt to acquire the lock.

The lock is initially unlocked by
calling rel.

Desired specification. Locks are used to ensure exclusive access to some
shared resource. We can specify a lock in separation logic in terms of an abstract
resource predicate R (picked by the client of the lock) as follows:

{R} new Lock() {emp} {emp}l.Acquire() {R} {R} |.Release() {emp}

When the lock is unlocked the resource described by R is owned by the lock.
Upon acquiring the lock, the client takes ownership of R, until it releases the
lock again. Since the lock is initially unlocked, creating a new lock requires
ownership of R to be transferred to the lock. This is the standard separation logic

Fig. 2. A Joins implementation of a lock.

specification for a lock [17,10,11]. Here R thus describes the external resources
shared through the lock.

Proof sketch. Informally, we can understand the rel message as moving
the resource protected by the lock from the thread to the join instance, and
the acq message as doing the converse. This can be stated more formally using
channel pre- and postconditions as follows: P,eq = emp, Qacq = R, Prel = R,
and Qrel = emp.

Recall that channel postconditions describe the resources the recipient is
required to transfer to the sender upon receiving the message. Since the sender
of a message on an asynchronous channel has no way of knowing if its message
has been received, channel postconditions do not make sense for asynchronous
channels. We thus require channel postconditions for asynchronous channels to
be empty, emp.

As before, to prove that the acq and rel chord satisfies the channel postcon-
ditions, we have to show that the combined channel preconditions imply the
combined channel postconditions: Pacq * Prel = Qacq * @rei- This follows directly
from the fact that * is commutative.

2.3 Continuations

So far, every chord we have considered has simply matched and removed mes-
sages from the message pool. In general, a chord can have a continuation that
is executed when the chord fires, before any blocked synchronous senders are
allowed to continue.

Continuations can, for instance, be used to automatically send a message
on a certain channel when a chord fires. Thus they can be used to encode a
state machine. Moreover, one can also ensure that a state of the state machine is
correlated with the history or state of the synchronisation primitive that one is
implementing. To illustrate, we extend the lock from the previous example into
a biased reader/writer lock.*

A reader/writer lock [4] generalises a lock by introducing read-only permis-
sions. This allows multiple readers to access a shared resource concurrently. To
determine whether a read or write access request should be granted, three states
suffice: (idle) no readers or writers, (writer) exactly one writer, or (shared) one
or more readers. In the idle state there are no readers or writers, so it is safe to
grant both read and write access. In the shared state, as one client has already
been granted read access, it is only safe to grant read access. We can express
this as a state machine as follows:

% Biased here means that this reader/writer implementation may starve the writer
thread. It is possible to extend this implementation into an unbiased reader/writer
lock by introducing an additional asynchronous channel to distinguish between
whether or not there are any pending writers when a reader request has been granted.

relR relW
acqR, relR
acqR acqW

Here acqR and acqW refers to the acquire read and acquire write operation, and
relR and relW refers to the release read and release write operation.

Implementation. The idea is to encode this state machine using three asyn-
chronous channels, idle, shared, and writer, with the invariant that there is at most
one pending asynchronous message in the message pool at any given time. This
gives a direct encoding of the three states in the above state machine, and adds
a fourth intermediate state (when there is no pending message on any of the
three asynchronous channels). The intermediate state is necessary for the imple-
mentation, as it does not transition atomically between the states of the above
state machine. The joins implementation is given below.

class RWLock { private void AcqR() {
private SyncChannel acqR, acqW, relR, relW; readers++;
private AsyncChannel idle, shared, writer; shared.Call();
private int readers = 0; }
public RWLock() { private void RelR() {
Join j = new Join(); if (——readers == 0)
// ... initialise channels ... idle.Call();
else

j-When(acqR).And(idle).Do(AcqR); shared.Call();

j.-When(acqR).And(shared).Do(AcqR); }

j-When(relR).And(shared).Do(RelR);

j-When(acqW).And(idle).Do(writer.Call); public void AcquireR() { acqR.Call(); }

j.-When(relW).And(writer).Do(idle.Call); public void AcquireW() { acqW.Call(); }
public void ReleaseR() { relR.Call(); }

idle.Call(); public void ReleaseW() { relW.Call(); }

} }

We use three asynchronous channels to encode the current state in the above
state machine and thus to determine whether a read or write access can be
granted. In addition, we use the readers field to count the actual number of
readers, to determine which state to transition to when releasing a reader. Note
that the continuation given to Do is a named C* delegate, and that in all five
cases, the given continuation sends a message on an asynchronous channel. These
calls are reentrant calls back into the joins library, making these continuations
reentrant callbacks.

Note further that all five chords consume exactly one asynchronous message
and sends exactly one asynchronous message. Between consuming and sending
the asynchronous message, there are no pending asynchronous messages and
the reader/writer is in the previously mentioned fourth state. Hence, between

consuming and sending an asynchronous message, no other chord can fire and
the currently executing continuation has exclusive access to the internal state of
the reader/writer lock (i.e., the readers field).

Desired specification. The standard separation logic specification for a
reader/writer lock is expressed using counting permissions [2]. Counting permis-
sions allow a full write permission to be split into any number of read permis-
sions, counting the total number of read permissions, to allow them to be joined
up to a full write permission later. The standard specification is given below in
terms of an abstract resource predicate for writing to the resource Ry ite and
an abstract resource predicate for reading the resource R,.cqq-

{Rwrite } new RWLock() {emp}

{emp} LAcquireR() {Rread}

{emp} . AcquireW() {Rurite} (1)
{Rread} |ReleaseR() {emp}
{Ruwrite} |.ReleaseW() {emp}

To avoid introducing counting permissions directly, we specify the reader/write
lock in terms of an additional family of abstract resource predicates R(n), in-
dexed by n € N, satisfying that R(0) is the full write permission Ryrite, and
R(n) is the permission left after splitting off n read permissions. Thus R should
satisfy, Vn € N. R(n) < Ryeqq * R(n+ 1) and R(0) < Ryrite- Note that a client
of the reader/writer lock is free to pick any Ryrite, Rread and R that satisfies
these two properties.

Proof sketch. The three asynchronous channels encode the current state
of the reader/writer lock. The channel preconditions of the three asynchronous
channels thus describe the resources owned by the reader/writer lock in the idle,
shared and writer state, respectively. In the idle state (no readers or writers),
the reader/writer lock owns the readers field and the full write permission, and
the readers field contains 0. In the shared state (one or more readers), the read-
er/writer lock owns the readers field and the remaining permission after splitting
off n read permissions and the readers field contains n. Lastly, in the writer state
(exactly one writer), the writer owns the full resource and the reader/writer lock
only owns the readers field.

Pigie =readers — 0 % R(0) Pyyriter =readers — 0
Pspared = In € N. 1 > 0 xreaders — n * R(n)
Since idle, shared, and writer are asynchronous, their channel postconditions must
be empty (as explained earlier).

For the synchronous channels we can read off their channel pre- and post-
conditions directly from the desired specification (1):

Pach = €mp Qach = Rread Pach = emp Qach = R(O)
Prer = Rread Qrelr = emp Praw = R(0) Qrew = emp

To register a chord without a continuation we had to show that the combined
channel preconditions implied the combined channel postconditions. What about

the present case with a proper continuation? Since the continuation runs before
the release of any blocked synchronous callers, we have to show that the contin-
uation transforms the combined channel preconditions to the combined channel
postconditions. For the reader/writer lock we thus have to show the proof obliga-
tions on the left in Figure 3. These proof obligations are all completely standard
and mostly trivial separation logic proofs. For instance, the proof of the first
obligation is given on the right in Figure 3. Note that in this proof we use the

{RJ,('QR * Ptdle:}
{readers +— 0 R(0)}
{Pach * Pidle} AcqR() {Q acgR * Qidle} readers++;
{Pach * Pshared} AcqR() {Q acqR * Qshared} {773(1(1(7715’ — 1% R(U)}
{PrelR * Pshared} RelR() {QrelR * Qshared} {readers — 1+ Rioq + R(1)}
{Pach * Pidle} writer.Call() {Qach * Qidle} Shared-call()i
{PreIW * Pwriter} idle.Call() {Q relw * Qwriter} {Rread}
{Qacqr * Qidie }

Fig. 3. Left: Proof obligations for the reader/writer lock chords. Right: A proof sketch
for the first proof obligation of the reader/writer lock.

channel pre- and postcondition of the shared channel. These proofs thus have a
similar character to partial correctness proofs of a recursive method, where one
is allowed to assume the specification of a method while proving that its body
satisfies the assumed specification. Here we assume the shared channel obeys the
chosen ownership transfer protocol while proving that the first chord obeys the
chosen protocol.

2.4 Nonlinear patterns

The public interface of the 2-barrier in Section 2.1 is slightly non-standard, as it
has two distinct arrival methods. A more standard barrier interface would pro-
vide a common Arrive method, for both clients. The joins library also supports an
implementation of a barrier with such an interface, through the use of nonlinear
patterns. Nonlinear patterns match multiple messages from the same channel.

Implementation. We can thus implement a more standard 2-barrier as a
joins instance with a single synchronous arrival channel and a single chord with
a nonlinear pattern that matches two messages on the arrival channel. Clearly
this generalises to an n-barrier, which can be implemented as follows.

class Barrier {
private SyncChannel arrive;

public Barrier(int n) {
Join j = new Join(); arrive = new SyncChannel(j); Pattern p = j.When(arrive);
for(int i = 1; i < n; i++) { p = p.-And(arrive); };
p.Do();

}

public void Arrive() { arrive.Call(); }

This code registers a single chord with a pattern that matches n messages on
the synchronous arrive channel.

Desired specification. As before, assume predicates B" and Bt (picked
by the client), where B;” describes the resources client 7 transfers to barrier upon
arrival and B{"t describes the resources client ¢ expects to receive back from the
barrier upon leaving. These predicates should satisfy the following redistribution
property, ®i€{1,...,n}B;n = ®i€{17_”’n}B§’”t, to allow the barrier to redistribute
the combined resources, once every client has arrived.

From the informal description of BI" and Bt one might thus expect an
n-barrier b to satisfy the following specification:

{Bi"} b.Arrive() { B2t}

That is, if a client transfers Bi" to the barrier upon arrival, it should receive back
B from the barrier upon leaving. However, this specification is not quite right.
In particular, what prevents client ¢ from impersonating client j when it arrives
at the barrier? To apply the redistribution property to the combined resources
transferred to the barrier we need to ensure that when client ¢ arrives at the
barrier, it actually transfers B" to the barrier, even if it also happens to own
B}". Hence, while the barrier implementation no longer distinguishes between
clients, we still need a way to distinguish clients logically. We can achieve this
by introducing a client identity predicate, id(7) to assert that the owner is client
1. By making this predicate non-duplicable, we can enforce that clients cannot
impersonate each other.

‘We can now express a correct barrier specification in terms of thisid predicate
as follows:

{emp} new Barrier(n) {®ie{1,...n}id(i)} {BiM xid(i)} b.Arrive() { Bt id(i)}

Upon creation of a new n-barrier we get back n id assertions. These are then
distributed to each client to witness their identity when they arrive at the barrier.

Proof sketch. Our proof sketch of the 2-barrier in Section 2.1 exploited
that the implementation used distinct channels to signal the arrival of each client,
which allowed us to pick different channel pre- and postconditions for each client.
Since the above implementation uses a single arrival channel we have to pick a
common channel pre- and postcondition that works for every client. We can
achieve this using a logical argument to relate the channel precondition and the
channel postcondition. In this case we index the channel pre- and postcondition
with the client identifier i: Pyyive(i) = BIM *id(i) and Qanive(i) = B xid (7).

For the id predicate to witness the identity of clients, it must be non-duplicable.
That is, it must satisfy, id(¢) *id(j) = @ # j. To define theid predicate such that
it satisfies the above property, we need to introduce a bit more of our logic. We
return to this example in Section 5.2.

3 Logic

The program logic is a higher-order separation logic [1] with support for rea-
soning about concurrency, shared mutable data structures [7,6], and recursive
delegates [23]. We use this one program logic to reason about both clients of the
joins library, and an implementation of the joins library.

Our program logic is a general purpose logic for reasoning about higher-order
concurrent C* programs. We have presented the logic in a separate paper [26].
The full logic and its soundness proof is included in the accompanying technical
report [24] of that paper. For the present paper we limit our attention to those
features necessary to verify our client examples. To this end, it suffices to consider
a minor extension of higher-order separation logic with fractional permissions,
phantom /auxiliary state and nested triples [21].

Higher-order separation logic. Every specification in Section 2 was ex-
pressed in terms of abstract resource predicates, such as the lock invariant R.
This is easily and directly expressible in a higher-order logic, by quantification
over predicates [1,19].

Our assertion logic is an intuitionistic higher-order separation logic over a
simply typed term language. The set of types is closed under function space and
products, and includes the type of propositions, Prop, the type of specifications,
Spec, and the type of mathematical values, Val. The Val type includes all C?
values and strings, and is closed under formation of pairs, such that mathematical
sequences and other mathematical objects can be conveniently represented.’

Fractional permissions. The notion of ownership in standard separation
logic is very limited, supporting only two extremes: exclusive ownership and no
ownership. To formalise the examples from the previous section we need a mid-
dle ground of read-only permissions, which can be freely duplicated. Fractional
permissions [3] provide a popular solution to this problem, by annotating the
points-to predicate with a fraction p € (0, 1], written x.f P v, Full permission
corresponds to p = 1 and grants exclusive access to the field f. Permissions can

be split and combined arbitrarily (z.f &> v a.f v v < z.f e v). Any fraction
less than 1 grants partial read-only access to the field f. We write z.f — v as

shorthand for x. f 5 v and x.f +» v as shorthand for Jp € (0,1]. x.f B 0.
Phantom state. Auxiliary variables [18] are commonly used as an abstrac-
tion of the history of execution and state in Hoare logics. Normally, one declares
a subset of program variables as auxiliary variables that can be updated using
standard variable assignments, but are not allowed to affect the flow of execu-
tion. To support this style of reasoning, we extend separation logic with phantom
state. Like standard auxiliary variables, phantom state allows us to record an
abstraction of the history of execution, but unlike standard auxiliary variables,
phantom state is purely a logical construct (i.e., the operational semantics of
the programming language is not altered to accommodate phantom state and

® We use a single universe Val for the universe of mathematical values to avoid also
having to quantify over types in the logic. We omit explicit encodings of pairs and
write (v1, ..., v,) for tuples coded as elements of Val.

phantom state is not updated through programming level assignments). When
combined with logical arguments, phantom state allows us to logically distinguish
and relate multiple messages on the same channel, as needed for the n-barrier
example.

Phantom state extends objects with a logical notion of phantom fields and an
accompanying phantom points-to predicate, written x; B v, to make assertions
about the value and ownership of these phantom fields. To support read-only
phantom fields, we further enrich the notion of ownership with fractional per-
missions. Thus ¥ v asserts the ownership of phantom field f of object =z,
with fractional permission p, and that this phantom field currently contains
the value v. Like the normal points-to predicate, phantom points-to satisfies
Ty 2N UL kT 2 v = v1 = v as phantom fields contain a single fixed value at
any given point in time.

Phantom fields are updated using a wview shift. The notion of a view shift
comes from the Views framework for compositional reasoning about concur-
rency [6], and generalises assertion implication. A view shift from assertion p to
assertion ¢ is written p C ¢. Views shifts can be applied to pre- and postcondi-
tions using the following generalised rule of consequence:

pCp {plfd} ' Cyq
{p}e{q}

Given full ownership (fractional permission 1) of a phantom field f, one can

perform a logical update of the field (z =N vy Exy =N va). To create a phantom
field f we require that the field does not already exist, so that we can take full
ownership of the field. We thus require all phantom fields of an object o to be
created simultaneously when o is first constructed.

Figure 4 contains a selection of inference rules from our program logic, related
to view shifts and phantom state.

Nested triples. To reason about delegates we use nested triples [21]. We
write — {P}{Q} to assert that z refers to a delegate satisfying the given
specification.

pCq pCp {Pe{d}y dCq
pxrCgxr {pte{q}

S
I

i
Im
<

1 1 +
Ty = U1 EJIJH—)’UQ l‘f&’u1*xfg1)2:>’l}1:1)2 :Ef0£>’u*a;‘fl£>’u<:>l‘fpl—>qv

Fig. 4. Selected program logic inference rules

Reasoning about the implementation. Fractional permissions introduce
a more lenient ownership discipline that allows for read-only sharing. To verify
the implementation of the joins library, we need even more general forms of
sharing. To reason about general sharing patterns we base our logic on concurrent
abstract predicates [7].

Conceptually, concurrent abstract predicates (CAP) partitions the heap into
a set of regions that each come with a protocol governing how the state in
that region may evolve. This allows stable assertions — assertions that are closed
under changes permitted by the protocol — to be freely duplicated and shared.
To ensure soundness, the logic requires that all pre- and postconditions in the
specification logic are stable. We thus introduce a new type, SProp, of stable
assertions.

Concurrent abstract predicates with first-order protocols (i.e., protocols that
only refer to the state of their own region) suffice for reasoning about sharing
of primitive resources such as individual heap cells. To reason about sharing
of shared resources requires higher-order protocols that can relate the state of
multiple regions. In general, to reason about sharing of shared resources re-
quires reasoning about circular sharing patterns. HOCAP extends concurrent
abstract predicates with a limited form of higher-order protocols — called state-
independent higher-order protocols — and introduce partial orders to explicitly
rule out these circular sharing patterns.

Since we are using the same program logic to reason about join clients and
the underlying join implementation, join clients could themselves use CAP to de-
scribe shared resources when picking the channel pre- and postconditions. This
could potentially introduce circular sharing patterns. To simplify the presenta-
tion and focus on the main ideas behind our specification of the joins library
we have chosen to present a specification that does not allow clients to use
CAP in their channel pre- and postconditions. This allows us to give a simple
specification without any proof obligations about the absence of circular shar-
ing patterns. In the accompanying technical report, we define a stronger joins
specification that does allow clients to use CAP, but requires clients to prove
the absence of circular sharing patterns. In the technical report we verify the
joins implementation against this stronger specification. See Section 6 for further
discussion.

To prevent joins clients from using CAP, we introduce a new type, LProp, of
local propositions. Every predicate expressible in the language of higher-order
separation logic extended with phantom state and nested triples is of type LProp,
provided all higher-order quantifications quantify over LProp rather than Prop.
However, LProp is not closed under region and action assertions for reasoning
about shared mutable data structures using CAP. All assertions of type LProp
are trivially stable and LProp is thus a subtype of SProp. We thus require all
channel pre- and postconditions to be of type LProp. This ensures that clients
do not introduce circular sharing patterns.®

For details about the logic see our HOCAP paper and accompanying technical
report [26, 24].

5 This circular sharing pattern has been allowed by the first two authors recent
work [22].

4 Joins specification

In this section we present our formal specification for the joins library.

The full specification of the joins library is presented in Figure 5. To sim-
plify the specification and exposition of the joins library, we require all channels
and chords be registered before clients start sending messages.” Formally, we
introduce three phases:

ch: This phase allows new channels to be registered.
pat: This phase allows new chords to be registered.
call: This phase allows messages to be sent.

A newly created join instance starts in the ch phase. Once all channels have been
registered, it transitions to the pat phase. Once all chords have been registered,
it transitions to the call phase. In the call phase, the only way to interact with
the join instance is by sending messages on its channels.

The specification is expressed in terms of a number of abstract representation
predicates. We use three join representation predicates, joing,, join,,, and join
— one for each phase — which will be explained below. In addition, we use two
representation predicates for channels and patterns:

ch(c,7): This predicate asserts that c refers to a channel registered with join
instance j.

pat(p, j, X): This predicate asserts that p refers to a pattern on join instance j
that matches the multi-set of channels X.

These representation predicates are all existentially quantified in the specifica-
tion; clients thus reasons abstractly in terms of these predicates.

Channel initialisation phase. In the first phase we use the join repre-
sentation predicate: joing, (A, S, j). This predicate asserts that j refers to a join
instance with asynchronous channels A and synchronous channels S.

The join constructor (JOIN) returns a new join instance in the ch phase with
no registered channels.

The two rules for creating and registering new channels (SYNC and ASYNC)
take as argument a join instance j in the ch phase and return a reference to
a new channel. In both cases, we get back a ch assertion, ch(r,j), that asserts
that this newly created channel is registered with join instance j. In addition,
both postconditions explicitly assert that this newly created channel is distinct
from all previously registered channels, r ¢ AU S. As the channel predicate is
duplicable (ch(c,j) < ch(e, j)*ch(e, 7)), to allow multiple clients to use the same
channel, we have to state this explicitly.

Chord initialisation phase. In the second phase we use the join repre-
sentation predicate: join,,. (P, @, 7). This predicate asserts that j refers to a join
instance with channel preconditions P and channel postconditions (). Here P
and @ are functions that assign channel pre- and postconditions to each channel.

" This restriction rules out reasoning about self-modifying synchronisation primitives.
We are not aware of any examples of self-modifying join clients.

To relate the pre- and postcondition of a channel (as needed, e.g., in the n-barrier
example to distinguish clients), we index each channel pre- and postcondition
with a logical argument of type Val.® Formally P and @ are thus functions of
type P,Q : Val X Tehan — LProp where Tenan is the type of channel references.’

Once sufficient channels have been registered, the join instance can transition
into the chord initialisation phase using a view shift:

Ve,a.c € A= Q(a,c) = emp
jOinch(A> 57.7) - jOinpat(P7 Qa .7)

This forces all channel pre- and postconditions to be fixed before any chords
can be registered. This rule explicitly requires that the channel postconditions
of asynchronous channel are empty, emp, as explained in Section 2.2.

Rules WHEN and AND create a new singleton pattern, and add new channels
to an existing pattern, respectively. Note that a pattern matches a multi-set of
channels and the set-union in AND is thus multi-set union.

The rules for Do are more interesting. Rule D01 deals with patterns without
a continuation. Recall from our informal proof sketches that to add a new chord
without a continuation we showed that the combined channel preconditions of
the chord pattern implied the combined channel postconditions. Our specifica-
tion generalises this to require that the combined channel preconditions can be
view shifted to the combined channel postconditions. This generalisation allows
us to perform logical updates of phantom state when the chord fires. We will see
why this is useful in Section 5.2.

Furthermore, since our channel pre- and postconditions are now indexed by
a logical argument, we have to prove that we can perform this view shift for any
logical arguments (we have a logical argument for each channel). Formally,

VY € Pm(val X Tchan)- ’/Tch(Y) =X= ®y€YP(y) E ®yEYQ(y)

where P,,,(—) denotes the finite power multi-set operator and 7¢, is the power set
lifting of m5. Y thus associates a logical argument with each channel. To register
a chord that matches channels x and g, this thus reduces to two universally
quantified logical arguments, say a and b:

Va,b € Val. P(a,z) * P(b,y) C Q(a,z) * Q(b,y)

The rule for Do with a continuation (D02) is very similar, but instead of
requiring a view-shift, it takes a delegateb that transforms the combined precon-
ditions into the combined postconditions. Crucially, the delegate is given access
to the join instance in the message phase. This enables it to send messages, as
used in the reader/writer lock example (Section 2.3).

Message phase. The final phase allows messages to be sent. We use a third
abstract predicate, joing (P, Q,), with the same parameters as the previous
abstract predicate joinpat(P, @, j). Once all chords have been registered, the join

8 As Val is closed under pairs this allows us to encode an arbitrary number of logical
arguments of type Val.
9 Formally, Tehan is simply a synonym for Val, introduced to improve the exposition.

instance can transition into the third phase using a view shift: joinpat(P7 Q,j) C
jOincaII(Pa Q7])

The only operation in the third phase is to send messages using Call. The
rule for sending a message is very similar to the standard method call rule: we
provide the precondition P(a,c) and get back the postcondition Q(a,c). Here a
is the logical argument, which the client is free to pick.

Both the join,, and ch(—) predicate is freely duplicable, to allow multiple
clients to send messages on the same channel:

ch(c,j) < ch(c, j) * ch(e, j)
jOincaII(Pa Q»]) <:>J.Oincall(137 Qv]) >kjomcall(lga Qv])
Reasoning about joins. We have verified a simple lock-based implemen-
tation of the joins library (see the accompanying technical report for details).
We have thus given concrete definitions of the abstract predicates pat, ch, joing,,

joiny.e, joing, and proved that the implementation satisfies a generalisation of
the joins specification in Figure 5.

5 Reasoning with joins

In this section we revisit the lock and the n-barrier example, and sketch their
formal correctness proofs in terms of our formal specification of the joins library.
The lock example is intended to illustrate the joins specification in general, and
has thus been written out in full. The n-barrier example is intended to illustrate
the use of logical arguments and phantom state.

5.1 Lock

We begin by formalising the previous informal lock specification. As mentioned
in Section 3, to avoid reasoning about sharing of shared mutable data struc-
tures through themselves, we require all channel pre- and postconditions to be
local assertions — i.e., assertions of type LProp. Since the channel pre- and post-
conditions are defined in terms of the lock resource invariant, the lock resource
invariant must be a local assertion. The formal specification of the lock is thus:

VR : LProp. Jlock : Val — SProp.

{R} new Lock() {r. lock(r)}
{lock(l)} I.Acquire() {lock(l) x R}
{lock(l) * R} 1.Release() {lock()}

A Vz : Val. lock(x) < lock(z) *lock(z)

This specification introduces an explicit lock representation predicate, lock, which
is freely duplicable.

We now formalise the proof sketch of the joins-based lock implementation
from Section 2. Hence, for any predicate R, we have to define a concrete lock
predicate and show that the above specifications for the lock operations hold for
the concrete lock predicate.

Channel initialisation phase

JoiNn
{emp} new Join() {r. join., (0,0, r)}
- — - - SYNC
{join,, (A, S,j) } new SyncChannel(j) {r. join.,(A4, S U {r},j) *ch(r,j) xr ¢ AU S}
AsyNcC
{joing, (A, S,j)} new AsyncChannel(j) {r. joing, (AU {r}, S,j) x ch(r,j) xr ¢ AU S}
Chord initialisation phase
— - 1 — ; : WHEN
{join,, (P, Q,]) * ch(c,j) }j.When(c) {r. join (P, Q,]) * pat(r,j, {c}) }
— - — - AND
Jo”t]pat(P7 Qv]) * p/—\nd(c) JOInpa?(P7 Q:])*
pat(p, j, X) x ch(c, j) pat(p, j, X U{c})
VY € Prm(E). men(Y) = X = ®yey Py) E ®yeyQ(y) Dol
{jOinpat(P? Q?]) * pat(p7ja X)} pDO() {jOinpat(Pv Qa])}
Do2

jOinpat(P’Q7j) * pat(p7.jv X) *®262Ch(27j) *
VY € Pn(€E). men(Y) =X = - .
(£). man(Y) p.Do(b) {join,.. (P, Q.)}

o A})

Message phase
CALL

{joinu(P. @, 7) * ch(c, j) * P(a, c)}c.Call() {join(P, Q.) * Qa, <)}

Phase transitions

Ve,a.c € A= Q(a,c) = emp
jOinch(A7 Sv]) EJOinpat(Pinj) jOinpat(P7Q7.j) EJOincall(Pva.j)

Ch(C,j) < Ch(C,j) * Ch(C,j) jOincaII(Panj) <:>j0incall(F>7Q7.j) *.jOincall(P7Q7j)

Abstract predicates

pat : Tpat X Tjoin X Pm(Tchan) — SProp ch : Techan X Tjoin — SProp
joing, : Pm(Tchan) X Pm(Tchan) — SProp
join,,, joingy : (€ — LProp) x (£ — LProp) x Val — SProp

Here Py, (X) denotes the set of finite multi-subsets of X and

def def
Tjoin = Tchan = Tpat = Val & = Val x Tchan

en(X) = {m2(2) [@ € X} : Pin(€) = Prn(Tehan)

Fig. 5. Specification of the joins library.

The channel pre- and postconditions do not change relative to the infor-
mal proof. For any pair of channels ¢, and ¢, we define the channel pre- and
postcondition, P(cg, ¢,), Q(ca,) : £ — LProp, as follows:

emp ifc=c, R ife=c¢c,
P(cq,cr)(a,c) =< R ifc=c, Q(ca,cr)(a,c) = emp ifc=c,
1 otherwise 1L otherwise

In the proof, ¢, will be instantiated with the acquire channel and ¢, with the
release channel. Note that the logical argument a is simply ignored.

The lock predicate then asserts that there exists some join instance and that
fields acq and rel refer to channels with the above channel pre- and postcondition.

lock(z) = Ja,r,j : Val. a # r A z.acq > a * z.rel = r
* Ch(a7j> * Ch(r7j> *jOincaII(P(aaT)a Q(a,r),j)

We explicitly require that a and r are distinct to ensure that the above definition
of P and @ by case analysis on the second argument is well-defined. The lock
predicate only asserts partial ownership of fields acq and rel, to allow the lock
predicate to be freely duplicated.

Below is a full proof outline for the lock constructor.

public Lock() {
Join j; Pattern p;
{this.acq — null * this.rel — null * R}
j = new Join();
{this.acq + null x this.rel — null * R * join,, (0,0,]j)}
acq = new SyncChannel(j);
rel = new AsyncChannel(j);
{R * this.acq — a * this.rel — 7« join,, ({7}, {a},]) * a # r * ch(a,j) * ch(r,j)}
{R * this.acq = a * this.rel = 7 join . (P(a,7), Q(a,7),]) * a # r * ch(a,]) * ch(r,j)}
p = j.When(acq).And(rel);
{R * this.acq ~— a * this.rel = r * a # r * join . (P(a,7),Q(a,1),])
 ch(a,) + ch(r,) + pat(pj, {a,7})}
p-Do();
{R * this.acq > a * this.rel = r * join _ (P(a,r), Q(a,r),]) * a # r* ch(a,]) * ch(r,j) }
{R * this.acq — a * this.rel — 7 x join,(P(a,7), Q(a,r),]j) * a # r * ch(a,]j) = ch(r,])}
rel.Call();
{this.acq + a * this.rel — 7 * join_,(P(a,r), Q(a,r),]j) * a # r * ch(a,j) * ch(r,j)}
{lock(this) }
}

The call to Do further requires that we prove:
VY € Pr(€). man(Y) = {a,r} = ®yey Pla,7)(y) E ®yey Q(a,7)(y)

which follows easily from the commutativity of .
The full proof outline for Acquire is given below. The proof for Release is similar.

public void Acquire() {
SyncChannel c;

{lock(this) }

{this.acq +> a * this.rel = r * join_, (P (a,r), Q(a,r),]j) * a # r * ch(a,j) * ch(r,j)}
¢ = this.acq;

{this.acq +> c x this.rel = 7 x join_,(P(c,7), Q(c,7),]) * ¢ # r x ch(c,]) * ch(r,j)}
c.Call();

{this.acq + ¢ * this.rel = r * join_(P(c,7),Q(c,7),j) x c #

x ch(c,]) = ch(r,j) * Q(c,7)(0,¢)}
{lock(this) * R}
}

When we call the acq channel we have to pick a logical argument a. Since the
channel pre- and postcondition ignores the a, we can pick anything. In the above
proof we arbitrarily picked 0, hence the Q(c,7)(0,c) in the postcondition.

5.2 n-barrier

In this section we formalise a proof of the n-barrier from Section 2.4. This exam-
ple illustrates how logical arguments combined with phantom state allows us to
logically distinguish messages on a single channel. The example also illustrates
the use of a non-trivial view-shift to update a phantom field upon firing of a
chord.

Desired specification. In Section 2.4 we gave an informal specification of
an n-barrier, under the assumption that clients transferred the same resources to
the barrier at every round of synchronisation, and that the barrier redistributed
these resources in the same way at every round of synchronisation. As these
assumptions are unrealistic, we start by generalising the specification.

The simplified n-barrier specification was expressed in terms of two asser-
tions Bi" and Bt that described the resources client i transferred to and from
the barrier at every round of synchronisation. Here, instead, we take B'™ and
B°"* to be predicates indexed by a client identifier 7 and the current round of
synchronisation m. The general n-barrier specification is given in Figure 6.

vn € N. VB", B® : {1,...,n} x N — LProp.
(Vm € N. ®icqr,...ny B (M) C ®icqa,.. ny B (M) =
Ibarrier : Val — SProp. Jclient : Val x {1,...,n} x N — SProp.
{n = n}new Barrier(n) {ret. barrier(ret) * ®;c(1,... n)client(ret,7,0)}

AVied{l,..,n}. Ym e N.

{barrier(b) * client(b, i, m) * BI"(m)}
b.Arrive()

{barrier(b) * client(b, i, m + 1) * B{**(m)}

A Vz : Val. barrier(x) < barrier(x) barrier(x)

Fig. 6. General n-barrier specification. This specification requires that the number of

clients, n, is known statically. This simplifies the exposition. We can also specify and
verify a specification without this assumption.

Herebarrier is the barrier representation predicate, which can be freely duplicated.
The client predicate plays two roles: namely, (1) to witness the identity of each
barrier client (like theid predicate from Section 2.4), and (2) to ensure that every
client of the barrier agrees on the round of synchronisation, m, whenever they
arrive at the barrier. These two properties are necessary to ensure that we can
redistribute the combined resources when every client has arrived at the barrier.
When one creates a new n-barrier, one thus receives n client predicates — one for
each client — each with 0 as the current round of synchronisation. The current
round of synchronisation is incremented by one at each arrival at the barrier.

Predicate definitions. We start by giving concrete definitions for the ab-
stract barrier and client predicate. Hence, assume n € N clients and abstract
predicates B, Bt : {1,...,n} x N — LProp satisfying,

Vm € N. ®ic(1,..n} B;n(m) C ®ie{1,...,n}B§)Ut(m) (2)

Since the n-barrier only has a single channel, we need to pick a single channel
pre- and postcondition that works for every client, for every round of synchro-
nisation. We thus take the logical argument for the arrival channel to be a pair
consisting of a client identifier ¢ and the current synchronisation round m. From
the specification above, when client i arrives for synchronisation round m it
transfers Bi"(m) to the barrier and expects to receive back BUt(m). In addition,
the client gives up its client predicate and gets back a new one, with the same
logical client identifier 7 and an incremented synchronisation round, m + 1. For
any barrier b and channel ¢; we thus define the channel pre- and postcondition
P(b,¢1),Q(b,c1) : £ — LProp as follows:

P(b, c1)((i,m), ¢) =

client(b,i,m) * B"(m) ifc=¢;
L otherwise

Q. e1)((i,m), ¢) = {client(b,i,m + 1)« B(m) ifc= c.l

1 otherwise
Here the (i,m) is the logical argument consisting of the logical client identifier
1 and synchronisation round m. In the proof, ¢; will be instantiated with the
arrival channel.

Above, we defined the channel pre- and postcondition in terms of an abstract
client predicate, which we have not defined yet. We thus need to define client. This
is the main technical challenge of the proof. So, to motivate its definition, we
start by considering what properties the client predicate should satisfy. Recall
that we use the client predicate to (1) witness the identity of clients, and to (2)
ensure that clients agree on the current round of synchronization when they
arrive at the barrier.

To witness the identity of clients, disjoint client predicates must refer to dis-
tinct clients, as expressed by property (3) below. To ensure that clients agree
on the current round of synchronisation, the client predicate should also satisfy
(4). Lastly, to update the current round of synchronisation when every client

has arrived at the barrier, the client predicate should satisfy (5).

Vb, i, j, m. client(b, i, m) *client(b, j,m) =i # j (3)
Vb, 4, j,m, k. client(b, i, m) *client(b, j, k) = m =k (4)
Vb, m. ®icq1,... n)client(b,i,m) C ®icq1,... pclient(b,i,m + 1) (5)

Note that (5) is consistent with (4), since we update all n client predicates simul-
taneously.

We can satisfy (4) and (5) by introducing a phantom field to keep track of
the current round of synchronisation. By giving each client /n-th permission of
this phantom field, we ensure that every client agrees on the current round of
synchronisation, (4). Furthermore, given all n client predicates, these fractions
combine to the full permission, allowing the phantom field to be updated arbi-
trarily, and thus in particular, to be incremented; thus satisfying (5). We can
satisfy (3) by associating each client identifier ¢ with a non-duplicable resource
e; in the logic, and requiring ownership of e; in the client predicate. We thus

1/n .
define client as follows, client(b,i,m) = bround 2% % ob where o¥ is defined as

'Rl
follows: 05-’ =dv: Val. b; — v.
The barrier predicate is now trivial to define:

barrier(b) = 37, ¢ : Val. barrive +> ¢ * join,, (P(b, ¢), Q(b, ¢), j) * ch(c, j)

It simply asserts that arrive refers to a channel on a join instance with the channel
pre- and postcondition we defined above.

Proof. Now that we have defined aclient predicate satisfying (3), (4), and (5),
we can proceed with the verification of the n-barrier. The main proof obligation
is proving that the barrier chord satisfies the postconditions of the channels it
matches. Since the barrier chord matches n arrival messages, by rule Dol we
thus have to prove that:

VY € Pu(€)- men(Y) = {c'} = @yev P(b,e1)(y) E @yev @b, c1)(y)

To simplify the exposition, we consider the case for n = 2. The proof for n > 2
follows the same structure. For n = 2 the above proof obligation reduces to:

Vi17i27m17m2-
client(b, i1,m1) * B" (mq) *client(b, in, m2) * Bl (ma) C (6)
client(b, i1, my + 1) % B (my) client(b, ia, mg + 1) x B (my)

At this point we cannot directly apply the user-supplied redistribution property,
(2), as it requires that m; = mq and 4 # i9. First, we need to use properties
(3) and (4) to constrain what logical arguments clients could have chosen when
they send their arrival messages. By property (4) it follows that m; = mao.
Furthermore, from property (3) it follows that i; and i are distinct. Since iy, 45 €
{1,2}, (6) thus reduces to:

Vm. client(b, 1,m) * B"(m) *client(b, 2, m) * B (m) T

7
client(b, 1,m + 1) * BS" (m) *client(b, 2, m + 1) * B"*(m) @

Using the redistribution property, (2), and (5) it follows that,

Vm. BI"(m) * Bi?(m) € B (m) * B3"*(m)
VYm. client(b, 1, m) *client(b, 2, m) Cclient(b, 1, m + 1) *client(b, 2, m + 1)

Combining these two we thus get (7). We have thus proven (6). Note that here
we implicitly used the ability to perform a view shift when a chord fires, to
increment the value of the phantom field round.

The verification of the constructor and Arrive method is now straightforward.

In summary, using logical arguments and phantom state we can thus show
that the generalised n-barrier from Section 2.4 satisfies the generalised barrier
specification. While the proof is more technically challenging than any of the
previous examples, it is still a high-level proof about barrier concepts. Informally,
we proved that clients agree on the current synchronisation round and that
clients identify themselves correctly; both natural proof obligations for a barrier.

6 Discussion

We first relate our specification of joins and the clients thereof to earlier work
and then evaluate what we have learned about HOCAP from this case study.

In terms of reasoning about external sharing, O’Hearn’s original concurrent
separation logic supports reasoning about shared variable concurrency using
critical regions [17]. This was subsequently extended to a language with locking
primitives by Hobor et al. [11] and Gotsman et al. [10], and to a language with
barrier primitives by Hobor et al. [12]. In all four cases, the underlying synchro-
nisation primitives were taken as language primitives and their soundness was
proven meta-theoretically.

Concurrent abstract predicates by Dinsdale-Young et al. [7] extends standard
separation logic with support for reasoning about shared mutable state by impos-
ing protocols on shared resources. Dinsdale-Young et al. used this logic to verify
a spin-lock implemented using compare-and-swap. The spin-lock was verified
against a non-standard lock specification without built-in support for reasoning
about external sharing. Hence, to reason about external sharing, clients would
have to define a protocol of their own, relating ownership of the shared resources
with the state of the lock. This type of reasoning is not modular, as it requires
the specification of concurrent libraries to expose internal implementation de-
tails of synchronisation primitives, to allow clients to define a protocol governing
the external sharing.

Jacobs and Piessens recently extended their VeriFast tool with support for
fine-grained concurrency [14] and verified a lock-based barrier implementation
[13] inspired by [11]. They verify the implementation against a specification
without built-in support for reasoning about external sharing. Compared to our
barrier specification, their specification is thus fairly low-level, requiring clients
of the barrier to use auxiliary variables to encode who has arrived and what
resources they have transferred to the barrier.

The goal of this case study was to test whether HOCAP supports modu-
lar reasoning about concurrent higher-order imperative libraries. To this end,
we have proposed an abstract specification of the C* joins library, expressed
in terms of high-level join primitives. We have demonstrated that this abstract
specification suffices for formal reasoning about a series of classic synchronisa-
tion primitives, which allow for external sharing. Compared to previous work on
verifying synchronisation primitives using separation logic, our specifications are
stronger and our proofs are considerably simpler. Thus, from this perspective,
our case study supports the thesis that HOCAP is useful for modular reasoning
about concurrent higher-order imperative libraries. However, as explained in Sec-
tion 3, the joins specification presented in this paper is restricted to local pre-
and postconditions for channels, which means that synchronization primitives
implemented using joins can only have local assertions as resource invariants.
Recall, e.g., the lock specification in Section 5.1, where the resource invariant
ranges over LProp, which means that clients of the lock cannot use CAP when
picking a resource invariant for the lock. In the technical report [25] we have
presented a stronger specification of joins, which does allow clients to use CAP
for such resource invariants, but that is at the expense of complicating the spec-
ification, to avoid circular sharing patterns. Thus future work includes finding
stronger models of HOCAP that support simple specifications and circular shar-
ing patterns.

Acknowledgements

We would like to thank Mike Dodds, Bart Jacobs, Jonas Braband Jensen, Hannes
Mehnert, Claudio Russo, and Aaron Turon for helpful discussions and feedback.

References

1. B. Biering, L. Birkedal, and N. Torp-Smith. BI-Hyperdoctrines, Higher-order Sep-
aration Logic, and Abstraction. ACM TOPLAS, 2007.

2. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission account-
ing in separation logic. In Proceedings of POPL, pages 259270, 2005.

3. J. Boyland. Checking interference with fractional permissions. In Static Analysis:
10th International Symposium, pages 55-72, 2003.

4. P.-J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with ”Readers”
and "Writers”. Commun. ACM, 14(10):667-668, 1971.

5. P. da Rocha Pinto, T. Dinsdale-Young, M. Dodds, P. Gardner, and M. Wheelhouse.
A simple abstraction for complex concurrent indexes. SIGPLAN Not., 46(10):845—
864, Oct. 2011.

6. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views:
Compositional Reasoning for Concurrent Programs. In Proceedings of POPL, 2013.

7. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis.
Concurrent Abstract Predicates. In Proceedings of ECOOP, 2010.

8. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. Fournet and G. Gonthier. The Join Calculus: A Language for Distributed Mobile
Programming. In Proceedings of APPSEM, pages 268-332, 2000.

A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local Reasoning for
Storable Locks and Threads. In Proceedings of APLAS, pages 19-37, 2007.

A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle Semantics for Concurrent
Separation Logic. In Proceedings of ESOP, pages 353-367, 2008.

A. Hobor and C. Gherghina. Barriers in concurrent separation logic. In Proceedings
of ESOP, pages 276-296, 2011.

B. Jacobs. Verified general barriers implementation.
http://people.cs.kuleuven.be/~bart.jacobs/verifast /examples/barrier.c.html.

B. Jacobs and F. Piessens. Expressive modular fine-grained concurrency specifica-
tion. In Proceedings of POPL, pages 271282, 2011.

N. Krishnaswami. Verifying Higher-Order Imperative Programs with Higher-Order
Separation Logic. PhD thesis, Carnegie Mellon University, 2012.

N. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying Event-Driven Programs
using Ramified Frame Properties. In Proceedings of TLDI, 2010.

P. W. O’Hearn. Resources, Concurrency and Local Reasoning. Theor. Comput.
Sei., 375(1-3):271-307, 2007.

S. S. Owicki. Aziomatic Proof Techniques for Parallel Programs. PhD thesis,
Cornell, 1975.

M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In Pro-
ceedings of POPL, pages 247-258, 2005.

C. V. Russo. The Joins Concurrency Library. In Proceedings of PADL, pages
260-274, 2007.

J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare Triples and
Frame Rules for Higher-Order Store. LMCS, 7(3:21), 2011.

K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract Predicates. Un-
der submission, 2013.

K. Svendsen, L. Birkedal, and M. Parkinson. Verifying Generics and Delegates. In
Proceedings of ECOOP, pages 175-199, 2010.

K. Svendsen, L. Birkedal, and M. Parkinson. Higher-order Concurrent Abstract
Predicates. Technical report, I'T University of Copenhagen, 2012. Available at
www.itu.dk/people/kasv/hocap-tr.pdf.

K. Svendsen, L. Birkedal, and M. Parkinson. Verification of the Joins Library in
Higher-order Separation Logic. Technical report, IT University of Copenhagen,
2012. Available at www.itu.dk/people/kasv/joins-tr.pdf.

K. Svendsen, L. Birkedal, and M. Parkinson. Modular Reasoning about Separation
for Concurrent Data Structures. In Proceedings of ESOP, 2013.

