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A case study ...

• C# Joins library [Russo, Turon & Russo]

• declarative way of defining synchronization primitives, based on 
the join calculus [Fournet & Gonthier]

• combines higher-order features with state, concurrency, 
recursion through the store and fine-grained synchronization

• small (150 lines of C#) realistic library
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class RWLock {
  public SyncChannel acqR, acqW, relR, relW;
  private AsyncChannel unused, shared, writer; 
  private int readers = 0; 

  public RWLock() {
    Join join = new Join(); 
    // ... initialize channels ...

    join.When(acqR).And(unused).Do(() => { readers++; shared(); });
    join.When(acqR).And(shared).Do(() => { readers++; shared(); });
    join.When(acqW).And(unused).Do(() => { writer(); });
    join.When(relW).And(writer).Do(() => { unused(); });
    join.When(relR).And(shared).Do(() => {
      if (--readers == 0) unused() else shared(); });
    
    unused();
  }
}

Joins example
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Specification

• Requirements:

• Ownership transfer

• Stateful reentrant continuations

• Restrict attention to non-self-modifying clients



Ideas

• Let clients pick an ownership protocol for each channel

• The channel pre-condition describes the resources the sender is 
required to transfer to the recipient upon sending a message

• The channel post-condition describes the resources the recipient is 
required to transfer to the sender upon receiving the message

• The channel post-condition of asynchronous channels must be emp

• Prove chords obey the ownership protocol, assuming channels 
obey the ownership protocol (to support reentrancy)
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{join(P,Q, j) ⇤ chan(c, j) ⇤ P (c)}
c()

{join(P,Q, j) ⇤ chan(c, j) ⇤Q(c)}

Specification

• Send a message on channel c (async or sync)

family of channel pre- and post-conditions, indexed by channels
transfer channel pre-

condition from client to 
join instance

transfer channel post-
condition from join 
instance to client

if c is an asynchronous channel, then 
channel post-condition must be emp



Specification

• Register a new chord with pattern p and continuation b

8
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joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
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Q(x) ⇤ join(P,Q, j)}

9
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>;

p.Do(b)
�
joininit-pat(P,Q, j)
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Specification

• Register a new chord with pattern p and continuation b

8
><

>:

joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
{~

x2X

Q(x) ⇤ join(P,Q, j)}

9
>=

>;

p.Do(b)
�
joininit-pat(P,Q, j)

 
the continuation is allowed to 
assume channels obey their 

ownership protocol



Verifying Clients

Locks Barriers

Concurrent bagLock

Lock-based Non-locking

Joins specification

...



Reader/Writer lock

• Given resource invariants R and Rro (picked by client) s.t.
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Reader/Writer lock

• Given resource invariants R and Rro (picked by client) s.t.

8n 2 N. R(n) , R
ro

⇤R(n+ 1)

• Rro : read permission to underlying resource

• R(0): write permission to underlying resource

• R(n): resource after splitting off n read permissions

{emp} acqR() {R
ro

}
{emp} acqW() {R(0)}

{R
ro

} relR() {emp}
{R(0)} relW() {emp}

• The reader/writer lock satisfies the following specification



• Assign pre-conditions to asynchronous channels

• Assign pre- and post-conditions to synchronous channels

P (unused) = readers 7! 0 ⇤R(0)

P (shared) = 9n 2 N. readers 7! n ⇤R(n) ⇤ n > 0

P (writer) = readers 7! 0

P (acqR) = emp

P (acqW) = emp

P (relR) = R
ro

P (relW) = R(0)

Q(acqR) = R
ro

Q(acqW) = R(0)

Q(relR) = emp

Q(relW) = emp



class RWLock {
  ...
  public int readers = 0;

  public RWLock() {  
    ...    
    join.When(acqR).And(unused).Do(() => { readers++; shared(); });
    ...
  }
}

• Prove chords obey channel ownership protocol
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class RWLock {
  ...
  public int readers = 0;

  public RWLock() {  
    ...    
    join.When(acqR).And(unused).Do(() => { readers++; shared(); });
    ...
  }
}

• Prove chords obey channel ownership protocol

{readers 7! 0 ⇤R(0) ⇤ join(P,Q, j)}
readers++

{readers 7! 1 ⇤R(1) ⇤R
ro

⇤ join(P,Q, j)}
shared();

{R
ro

⇤ join(P,Q, j)} P (shared) = 9n 2 N+.

readers 7! n ⇤R(n)



Verifying an Implementation

Locks Barriers

Concurrent bagLock

Lock-based Non-locking

Joins specification

...



Verifying an Implementation

• Challenges:

• High-level join primitives implemented using 
shared mutable state

• Definition of recursive representation predicates



Verifying an Implementation

• Challenges:

• High-level join primitives implemented using 
shared mutable state

• Definition of recursive representation predicates

guarded recursion & step-indexed model



Messages

class Message {
  public int state; 

  public Message() {
    state = 0;
  }

  public void Receive() {
    state = 1;
  }
}



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

state 7! 1

received



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

state 7! 1

received released

state 7! 1

matched

state 7! 0



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

state 7! 1

received released

state 7! 1

matched

state 7! 0



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

⇤ P (c)
state 7! 1

received released

state 7! 1

matched

state 7! 0



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

⇤ P (c)
state 7! 1

received

⇤ Q(c)

released

state 7! 1

matched

state 7! 0



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

anybody can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received

⇤ Q(c)

released

state 7! 1

matched

state 7! 0



Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

anybody can perform this transition

only message sender can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received

⇤ Q(c)

released

state 7! 1

matched

state 7! 0



Messages

• Use Concurrent Abstract Predicates [Dinsdale-Young et. al.] 
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Messages

• Use Concurrent Abstract Predicates [Dinsdale-Young et. al.] 
to impose this low-level protocol on messages

anybody can perform this transition

only message sender can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received released

state 7! 1

⇤ Q(c)

matched

state 7! 0

higher-order protocol
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HOCAP

• Higher-order protocols are difficult; the previous 
proposal [Dodds et. al.] from POPL11 is unsound!

• We require all channel pre- and post-conditions to be 
expressible using SIPs

invariant under arbitrary 
changes to protocols

invariant under arbitrary 
changes to the state

• We restrict attention to state-independent higher-
order protocols. An assertion P is expressible using 
state-independent protocols (SIPs) iff

9R,S : Prop. valid (P , R ⇤ S) ^ noprotocol(R) ^ nostate(S)



Summary

• Verified the lock-based joins implementation 
against the high-level joins specification

• Verified a couple of classic synchronization 
primitives using the high-level joins specification

• Given a logic and model for HOCAP with support 
for state-independent higher-order protocols

• TRs available at www.itu.dk/~kasv

http://www.itu.dk/~kasv
http://www.itu.dk/~kasv


Questions?



Higher-order protocols in CAP
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