
Verifying a higher-order,
concurrent, stateful library

Kasper Svendsen, Lars Birkedal and Matthew Parkinson

September 9, 2012
HOPE 2012

A case study ...

• C# Joins library [Russo, Turon & Russo]

• declarative way of defining synchronization primitives, based on
the join calculus [Fournet & Gonthier]

• combines higher-order features with state, concurrency,
recursion through the store and fine-grained synchronization

• small (150 lines of C#) realistic library

A case study in modularity

Concurrent bagLock

Lock-based Non-locking Join implementations

A case study in modularity

Concurrent bagLock

Lock-based Non-locking

Joins specification

Join implementations

A case study in modularity

Concurrent bagLock

Lock-based Non-locking

Joins specification

Join implementations

...Locks Barriers Join clients

A case study in modularity

Concurrent bagLock

Lock-based Non-locking

Joins specification

Join implementations

...Locks Barriers Join clients

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Joins example

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Joins example

channels

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Joins example

channels

chord

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Joins example

pattern

channels

chord

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Joins example

pattern

continuation

channels

chord

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Joins example

pattern

continuation

channels

chord

send a message on
the unused channel

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

A reader/writer lock

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

A reader/writer lock
synchronous channels to

acquire and release the lock

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

A reader/writer lock
asynchronous channels

encode the state of the lock
synchronous channels to

acquire and release the lock

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

A reader/writer lock
asynchronous channels

encode the state of the lock

each chord matches and sends
exactly one asynchronous message

synchronous channels to
acquire and release the lock

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

A reader/writer lock
asynchronous channels

encode the state of the lock

each chord matches and sends
exactly one asynchronous message

initially, there is exactly one
pending asynchronous message

synchronous channels to
acquire and release the lock

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Verification challenges

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Verification challenges

state effect

class RWLock {
 public SyncChannel acqR, acqW, relR, relW;
 private AsyncChannel unused, shared, writer;
 private int readers = 0;

 public RWLock() {
 Join join = new Join();
 // ... initialize channels ...

 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 join.When(acqR).And(shared).Do(() => { readers++; shared(); });
 join.When(acqW).And(unused).Do(() => { writer(); });
 join.When(relW).And(writer).Do(() => { unused(); });
 join.When(relR).And(shared).Do(() => {
 if (--readers == 0) unused() else shared(); });

 unused();
 }
}

Verification challenges

state effect

reentrant continuation

Joins specification

Locks Barriers

Concurrent bagLock

Lock-based Non-locking

Joins specification

...

Specification

• Requirements:

• Ownership transfer

• Stateful reentrant continuations

• Restrict attention to non-self-modifying clients

Ideas

• Let clients pick an ownership protocol for each channel

• The channel pre-condition describes the resources the sender is
required to transfer to the recipient upon sending a message

• The channel post-condition describes the resources the recipient is
required to transfer to the sender upon receiving the message

• The channel post-condition of asynchronous channels must be emp

• Prove chords obey the ownership protocol, assuming channels
obey the ownership protocol (to support reentrancy)

{join(P,Q, j) ⇤ chan(c, j) ⇤ P (c)}
c()

{join(P,Q, j) ⇤ chan(c, j) ⇤Q(c)}

Specification

• Send a message on channel c (async or sync)

{join(P,Q, j) ⇤ chan(c, j) ⇤ P (c)}
c()

{join(P,Q, j) ⇤ chan(c, j) ⇤Q(c)}

Specification

• Send a message on channel c (async or sync)

family of channel pre- and post-conditions, indexed by channels

{join(P,Q, j) ⇤ chan(c, j) ⇤ P (c)}
c()

{join(P,Q, j) ⇤ chan(c, j) ⇤Q(c)}

Specification

• Send a message on channel c (async or sync)

family of channel pre- and post-conditions, indexed by channels
transfer channel pre-

condition from client to
join instance

transfer channel post-
condition from join
instance to client

{join(P,Q, j) ⇤ chan(c, j) ⇤ P (c)}
c()

{join(P,Q, j) ⇤ chan(c, j) ⇤Q(c)}

Specification

• Send a message on channel c (async or sync)

family of channel pre- and post-conditions, indexed by channels
transfer channel pre-

condition from client to
join instance

transfer channel post-
condition from join
instance to client

if c is an asynchronous channel, then
channel post-condition must be emp

Specification

• Register a new chord with pattern p and continuation b

8
><

>:

joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
{~

x2X

Q(x) ⇤ join(P,Q, j)}

9
>=

>;

p.Do(b)
�
joininit-pat(P,Q, j)

Specification

• Register a new chord with pattern p and continuation b

8
><

>:

joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
{~

x2X

Q(x) ⇤ join(P,Q, j)}

9
>=

>;

p.Do(b)
�
joininit-pat(P,Q, j)

pattern p matches the multiset of channels X

Specification

• Register a new chord with pattern p and continuation b

8
><

>:

joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
{~

x2X

Q(x) ⇤ join(P,Q, j)}

9
>=

>;

p.Do(b)
�
joininit-pat(P,Q, j)

pattern p matches the multiset of channels X

resources senders must
transfer to recipient

Specification

• Register a new chord with pattern p and continuation b

8
><

>:

joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
{~

x2X

Q(x) ⇤ join(P,Q, j)}

9
>=

>;

p.Do(b)
�
joininit-pat(P,Q, j)

pattern p matches the multiset of channels X

resources senders must
transfer to recipient

resources recipient must
transfer to senders

Specification

• Register a new chord with pattern p and continuation b

8
><

>:

joininit-pat(P,Q, j) ⇤ pattern(p, j,X)

⇤ b 7! {~
x2X

P (x) ⇤ join(P,Q, j)}
{~

x2X

Q(x) ⇤ join(P,Q, j)}

9
>=

>;

p.Do(b)
�
joininit-pat(P,Q, j)

the continuation is allowed to
assume channels obey their

ownership protocol

Verifying Clients

Locks Barriers

Concurrent bagLock

Lock-based Non-locking

Joins specification

...

Reader/Writer lock

• Given resource invariants R and Rro (picked by client) s.t.

8n 2 N. R(n) , R
ro

⇤R(n+ 1)

• Rro : read permission to underlying resource

• R(0): write permission to underlying resource

• R(n): resource after splitting off n read permissions

Reader/Writer lock

• Given resource invariants R and Rro (picked by client) s.t.

8n 2 N. R(n) , R
ro

⇤R(n+ 1)

• Rro : read permission to underlying resource

• R(0): write permission to underlying resource

• R(n): resource after splitting off n read permissions

{emp} acqR() {R
ro

}
{emp} acqW() {R(0)}

{R
ro

} relR() {emp}
{R(0)} relW() {emp}

• The reader/writer lock satisfies the following specification

• Assign pre-conditions to asynchronous channels

• Assign pre- and post-conditions to synchronous channels

P (unused) = readers 7! 0 ⇤R(0)

P (shared) = 9n 2 N. readers 7! n ⇤R(n) ⇤ n > 0

P (writer) = readers 7! 0

P (acqR) = emp

P (acqW) = emp

P (relR) = R
ro

P (relW) = R(0)

Q(acqR) = R
ro

Q(acqW) = R(0)

Q(relR) = emp

Q(relW) = emp

class RWLock {
 ...
 public int readers = 0;

 public RWLock() {
 ...
 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 ...
 }
}

• Prove chords obey channel ownership protocol

class RWLock {
 ...
 public int readers = 0;

 public RWLock() {
 ...
 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 ...
 }
}

• Prove chords obey channel ownership protocol

{P (acqR) ⇤ P (unused) ⇤ join(P,Q, j)}
readers++

shared();

{Q(acqR) ⇤Q(unused) ⇤ join(P,Q, j)}

class RWLock {
 ...
 public int readers = 0;

 public RWLock() {
 ...
 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 ...
 }
}

• Prove chords obey channel ownership protocol

{readers 7! 0 ⇤R(0) ⇤ join(P,Q, j)}
readers++

{readers 7! 1 ⇤R(1) ⇤R
ro

⇤ join(P,Q, j)}
shared();

{R
ro

⇤ join(P,Q, j)}

class RWLock {
 ...
 public int readers = 0;

 public RWLock() {
 ...
 join.When(acqR).And(unused).Do(() => { readers++; shared(); });
 ...
 }
}

• Prove chords obey channel ownership protocol

{readers 7! 0 ⇤R(0) ⇤ join(P,Q, j)}
readers++

{readers 7! 1 ⇤R(1) ⇤R
ro

⇤ join(P,Q, j)}
shared();

{R
ro

⇤ join(P,Q, j)} P (shared) = 9n 2 N+.

readers 7! n ⇤R(n)

Verifying an Implementation

Locks Barriers

Concurrent bagLock

Lock-based Non-locking

Joins specification

...

Verifying an Implementation

• Challenges:

• High-level join primitives implemented using
shared mutable state

• Definition of recursive representation predicates

Verifying an Implementation

• Challenges:

• High-level join primitives implemented using
shared mutable state

• Definition of recursive representation predicates

guarded recursion & step-indexed model

Messages

class Message {
 public int state;

 public Message() {
 state = 0;
 }

 public void Receive() {
 state = 1;
 }
}

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

state 7! 1

received

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

state 7! 1

received released

state 7! 1

matched

state 7! 0

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

state 7! 1

received released

state 7! 1

matched

state 7! 0

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

⇤ P (c)
state 7! 1

received released

state 7! 1

matched

state 7! 0

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

state 7! 0

pending

⇤ P (c)
state 7! 1

received

⇤ Q(c)

released

state 7! 1

matched

state 7! 0

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

anybody can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received

⇤ Q(c)

released

state 7! 1

matched

state 7! 0

Messages
• Assume channel pre- and post-conditions P and Q

• Imagine a message on channel c

anybody can perform this transition

only message sender can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received

⇤ Q(c)

released

state 7! 1

matched

state 7! 0

Messages

• Use Concurrent Abstract Predicates [Dinsdale-Young et. al.]
to impose this low-level protocol on messages

anybody can perform this transition

only message sender can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received released

state 7! 1

⇤ Q(c)

matched

state 7! 0

Messages

• Use Concurrent Abstract Predicates [Dinsdale-Young et. al.]
to impose this low-level protocol on messages

anybody can perform this transition

only message sender can perform this transition

state 7! 0

pending

⇤ P (c)
state 7! 1

received released

state 7! 1

⇤ Q(c)

matched

state 7! 0

higher-order protocol

HOCAP

• Higher-order protocols are difficult; the previous
proposal [Dodds et. al.] from POPL11 is unsound!

HOCAP

• Higher-order protocols are difficult; the previous
proposal [Dodds et. al.] from POPL11 is unsound!

• We require all channel pre- and post-conditions to be
expressible using SIPs

invariant under arbitrary
changes to protocols

invariant under arbitrary
changes to the state

• We restrict attention to state-independent higher-
order protocols. An assertion P is expressible using
state-independent protocols (SIPs) iff

9R,S : Prop. valid (P , R ⇤ S) ^ noprotocol(R) ^ nostate(S)

Summary

• Verified the lock-based joins implementation
against the high-level joins specification

• Verified a couple of classic synchronization
primitives using the high-level joins specification

• Given a logic and model for HOCAP with support
for state-independent higher-order protocols

• TRs available at www.itu.dk/~kasv

http://www.itu.dk/~kasv
http://www.itu.dk/~kasv

Questions?

Higher-order protocols in CAP

I[↵] : y 7! 1 y 7! 2

J [↵] : y 7! 1 y 7! 3

K[↵] : P P

P
r0

K

P

def
= (x 7! 0 ⇤ (y 7! 0

r

I
_ y 7! 0

r

J
)) _

(x 7! 1 ⇤ y 7! 0
r

J
)

Let

where

then P is stable, but is not

