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Iris
Higher-order 

separation logic
Impredicative 

Invariants Monoids+ +

• Supports encoding of existing reasoning principles 

• Monoids for expressing protocols on shared state 

• Invariants for enforcing protocols on shared state
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• Invariants and monoids are orthogonal

• Treating them as such, leads to a simpler logic,  
and a model simple enough to formalize in Coq
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Invariants Monoids+ +

• Supports a notion of logical atomicity

• extends reasoning principles usually reserved for  
atomic code to code that appears to be atomic 

• we can define logical atomicity in Iris

Normally we have to reason about possible 
interference between every statement  

 
 R* c1 R* c2 R*

No need to reason about interference  
inside logically atomic operations  

 
 R* c1 c2 R*
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• An invariant is a property that holds of 

some piece of shared state at all times 
 
 
 
 
 
 
 

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}

There exists a shared 
invariant that owns R

We open the invariant and  
take ownership of R

To close the invariant, we must 
relinquish ownership of R

The set of invariants 
that we may open



• Introduces a circularity in the model 
• Modelled using standard metric-based 

techniques (ModuRes library in Coq)

Invariants

Higher-order 
separation logic

Impredicative 
Invariants Monoids+ +



Monoids

• Iris is parameterised by a notion of ghost resources 

• Ghost resources consists of 

• Information about the current ghost state 

• Rights to update ghost state 

• We use monoids to model ghost resources



Monoids

• Ghost resource      asserts ownership of m fragment 

• Ghost resources can be split arbitrarily 
 

• and support frame-preserving updates 

m

m1 ·m2 , m1 ⇤ m2

8af . (a · af ) # ) (b · af ) #
a V b



Part 2 
Recovering existing 
reasoning principles



Deriving small-footprint 
specifications

• Example: recovering small-footprint  
specifications from large-footprint specifications 

• Same idea as in Superficially Substructural Types 
(ICFP12) and Fictional Separation Logic (ESOP12)



A λ-calculus with channels

• We instantiate Iris with a λ-calculus with channels 
 

• with the following per-thread reduction semantics 
 
 
 
 

e ::= ... | newch | send(e, e) | tryrecv(e) | fork(e)

C[c 7! M ]; send(c, v) ! C[c 7! M ] {v}]; ()
C[c 7! ;]; tryrecv(c) ! C[c 7! ;];none

C[c 7! M ] {v}]; tryrecv(c) ! C[c 7! M ]; some(v)



Large-footprint specs
• Reduction relation lifts directly to large-footprint specs 

• The reduction  
 
 
 
yields the following axiom  
 
 

C[c 7! M ]; send(c, v) ! C[c 7! M ] {v}]; ()

{bC[c 7! M ]c} send(c, v) {r. r = () ^ bC[c 7! M ] {v}]c}

Asserts exclusive ownership of entire physical state



Small-footprint specs

• Large-footprint spec requires global reasoning 

• Goal: Derive small-footprint specification that only  
mentions channels affected by each operation  

{bC[c 7! M ]c} send(c, v) {r. r = () ^ bC[c 7! M ] {v}]c}



Small-footprint specs

• Idea

• Introduce appropriate channel ghost resources 

• Introduce an invariant that owns the physical state  
(so that it can be shared) and ties ghost resources 
to physical state 

• Extends to a general construction



Channel-local monoid
• Goal: ghost channels resources that support  

exclusive ownership of individual channels 

• Use partial channel “heaps”  
 
 
 

•                asserts exclusive ownership of ghost channel c 
and that contains messages M

|Net| = Chan
fin
* MsgBag

f · g = f [ g, if dom(f) \ dom(g) = ;

[c 7! M ]



Authoritative monoid
• Goal: a monoid with 

• An authoritative element        that asserts  
that the current ghost state is exactly m 

• A partial element       that asserts ownership  
of an m fragment of the authoritative state 

• s.t. all fragments combine to the authoritative state

m•

m�



Deriving a channel-local 
specification

{c ⌃ M}

send(c,m)

{c ⌃ M ] {m}}
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Deriving small-footprint 
specifications

• Channel monoid encodes small-footprint channel resources 

• Invariant relates ghost and physical state using authoritative 
monoid to allow ownership of channel fragments



Recovering existing 
reasoning techniques

• We saw how to recover reasoning principles from 
Superficially Substructural Types and Fictional 
Separation 

• One can also recover reasoning principles from CaReSL 
and iCAP through a encoding of STSs as monoids



Part 3 
Logical atomicity



Logical atomicity
• In part 2 we used the invariant rule to  

access the shared physical resource 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Logical atomicity
• In part 2 we used the invariant rule to  

access the shared physical resource 

• This rule only applies to atomic expressions 

• Iris allows us to extend this reasoning  
principle to logically atomic code

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}We can define logically atomic triples 

hP i e hQi



Logical atomicity

• Example: a blocking receive operation  
 
 
 

• Spins (without side effects) until a msg is received 

• The linearisation point is the first successful tryrecv

recv , rec recv(c). let v = tryrecv(c) in

case v of none => recv(c) | some(m) => m



Logical atomicity

• Ideas
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Logical atomicity

• Ideas

• Let clients reason about the state immediately  
before and after the linearisation point 

• Let clients open invariants around  
the linearisation point

Parameterise our 
specifications with view shifts

Let view shifts open and 
close invariants



Mask-changing view shifts
• Index view shifts with the set of invariants  

enabled before and after the view shift 
 

• Asserts

• that we can update the instrumented state from P to Q 
without changing the physical state 

• where the invariants in      are enabled before the view shift  

• and the invariants in       are enabled after the view shift 
 

P E1VE2 Q

E1
E2



Mask-changing view shifts
• We can change the invariant mask around  

atomic expressions, provided we restore it again 
 
 
 

• We can open and close invariants using view shifts 
 
 
 

e atomic

P {◆}V; P 0 {P 0} e {v. Q0}; 8v. Q0 ;V{◆} Q

{P } e {v. Q}{◆}

P
◆ {◆}V; .P P

◆
⇤ .P ;V{◆} >



Logical atomicity
• Idea: Let clients open and close invariants around 

linearisation point and update instrumented state  
 
 

• This allows us to open invariants around logically atomic code  
 
 
 

h.R ⇤ P i e h.R ⇤QiE
h R

◆
⇤ P i e hQiE]{◆}

hP i e hQiE ⇡ 8Rp, Rq, ER. E \ ER = ; ^
(Rp WV�ER P ) ^ (Q V�ER

Rq)

) {Rp} e {Rq}
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Logical atomicity
• Idea: Let clients open and close invariants around 

linearisation point and update instrumented state  
 
 

• This allows us to open invariants around logically atomic code  
 
 
 

h.R ⇤ P i e h.R ⇤QiE
h R

◆
⇤ P i e hQiE]{◆}

From the client’s point of view it  
looks like we have access to the 
invariant R for the duration of e.

From the module’s point of view 
we only access the invariant in 

the linearisation point.

hP i e hQiE ⇡ 8Rp, Rq, ER. E \ ER = ; ^
(Rp WV�ER P ) ^ (Q V�ER

Rq)

) {Rp} e {Rq}



Case study

λ-calculus with asynchronous message passing

small-footprint specifications

message passing blocking receive

mutable references as channels

elimination stack

physically  
atomic

logically  
atomic



Logical atomicity

• Logical atomicity is not built into Iris, but Iris is 
sufficiently expressive that we can define it in Iris.



Conclusions

• Iris is 

• simpler than previous logics 

• can encode reasoning principles from previous logics 

• and can do some fancy new stuff (logical atomicity) 

• Monoids and invariants are all you need


