
Iris: Monoids and Invariants
as an Orthogonal basis for

Concurrent Reasoning

Kasper Svendsen

joint work with  
Ralf Young, David Swasey, Filip Sieczkowski,  
Aaron Turon, Lars Birkedal and Derek Dreyer

LRG

RGSep

CAP

HOCAP

TaDA iCAP
CaReSL

….

LRG

RGSep

CAP

HOCAP

TaDA iCAP
CaReSL

A uniform framework for
describing interference

Iris
….

Iris
Higher-order

separation logic
Impredicative

Invariants Monoids+ +

• Supports encoding of existing reasoning principles

• Monoids for expressing protocols on shared state

• Invariants for enforcing protocols on shared state

Iris
Higher-order

separation logic
Impredicative

Invariants Monoids+ +

• Invariants and monoids are orthogonal

• Treating them as such, leads to a simpler logic,  
and a model simple enough to formalize in Coq

Iris
Higher-order

separation logic
Impredicative

Invariants Monoids+ +

• Supports a notion of logical atomicity

• extends reasoning principles usually reserved for  
atomic code to code that appears to be atomic

• we can define logical atomicity in Iris

Iris
Higher-order

separation logic
Impredicative

Invariants Monoids+ +

• Supports a notion of logical atomicity

• extends reasoning principles usually reserved for  
atomic code to code that appears to be atomic

• we can define logical atomicity in Iris

Normally we have to reason about possible
interference between every statement  

 
 R* c1 R* c2 R*

Iris
Higher-order

separation logic
Impredicative

Invariants Monoids+ +

• Supports a notion of logical atomicity

• extends reasoning principles usually reserved for  
atomic code to code that appears to be atomic

• we can define logical atomicity in Iris

Normally we have to reason about possible
interference between every statement  

 
 R* c1 R* c2 R*

No need to reason about interference  
inside logically atomic operations  

 
 R* c1 c2 R*

Part 1
Iris

Invariants
• An invariant is a property that holds of 

some piece of shared state at all times 
 
 
 
 
 
 
 

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}

The set of invariants
that we may open

Invariants
• An invariant is a property that holds of 

some piece of shared state at all times 
 
 
 
 
 
 
 

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}

There exists a shared
invariant that owns R

The set of invariants
that we may open

Invariants
• An invariant is a property that holds of 

some piece of shared state at all times 
 
 
 
 
 
 
 

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}

There exists a shared
invariant that owns R

We open the invariant and
take ownership of R

The set of invariants
that we may open

Invariants
• An invariant is a property that holds of 

some piece of shared state at all times 
 
 
 
 
 
 
 

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}

There exists a shared
invariant that owns R

We open the invariant and
take ownership of R

To close the invariant, we must
relinquish ownership of R

The set of invariants
that we may open

• Introduces a circularity in the model
• Modelled using standard metric-based

techniques (ModuRes library in Coq)

Invariants

Higher-order
separation logic

Impredicative
Invariants Monoids+ +

Monoids

• Iris is parameterised by a notion of ghost resources

• Ghost resources consists of

• Information about the current ghost state

• Rights to update ghost state

• We use monoids to model ghost resources

Monoids

• Ghost resource asserts ownership of m fragment

• Ghost resources can be split arbitrarily 
 

• and support frame-preserving updates 

m

m1 ·m2 , m1 ⇤ m2

8af . (a · af) #) (b · af) #
a V b

Part 2
Recovering existing
reasoning principles

Deriving small-footprint
specifications

• Example: recovering small-footprint  
specifications from large-footprint specifications

• Same idea as in Superficially Substructural Types
(ICFP12) and Fictional Separation Logic (ESOP12)

A λ-calculus with channels

• We instantiate Iris with a λ-calculus with channels 
 

• with the following per-thread reduction semantics 
 
 
 
 

e ::= ... | newch | send(e, e) | tryrecv(e) | fork(e)

C[c 7! M]; send(c, v) ! C[c 7! M] {v}]; ()
C[c 7! ;]; tryrecv(c) ! C[c 7! ;];none

C[c 7! M] {v}]; tryrecv(c) ! C[c 7! M]; some(v)

Large-footprint specs
• Reduction relation lifts directly to large-footprint specs

• The reduction  
 
 
 
yields the following axiom  
 
 

C[c 7! M]; send(c, v) ! C[c 7! M] {v}]; ()

{bC[c 7! M]c} send(c, v) {r. r = () ^ bC[c 7! M] {v}]c}

Asserts exclusive ownership of entire physical state

Small-footprint specs

• Large-footprint spec requires global reasoning

• Goal: Derive small-footprint specification that only  
mentions channels affected by each operation  

{bC[c 7! M]c} send(c, v) {r. r = () ^ bC[c 7! M] {v}]c}

Small-footprint specs

• Idea

• Introduce appropriate channel ghost resources

• Introduce an invariant that owns the physical state  
(so that it can be shared) and ties ghost resources
to physical state

• Extends to a general construction

Channel-local monoid
• Goal: ghost channels resources that support  

exclusive ownership of individual channels

• Use partial channel “heaps”  
 
 
 

• asserts exclusive ownership of ghost channel c
and that contains messages M

|Net| = Chan
fin
* MsgBag

f · g = f [g, if dom(f) \ dom(g) = ;

[c 7! M]

Authoritative monoid
• Goal: a monoid with

• An authoritative element that asserts  
that the current ghost state is exactly m

• A partial element that asserts ownership  
of an m fragment of the authoritative state

• s.t. all fragments combine to the authoritative state

m•

m�

Deriving a channel-local
specification

{c ⌃ M}

send(c,m)

{c ⌃ M] {m}}

Deriving a channel-local
specification

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)

{c ⌃ M] {m}}

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)

{c ⌃ M] {m}}

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)

{c ⌃ M] {m}}

{ [c 7! M]� ⇤ }

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)

{c ⌃ M] {m}}

{ [c 7! M]� ⇤ }{ [c 7! M]� ⇤ C• ⇤ bCc}

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)
{ ⇤ bC[c 7! C(c)] {m}c}

{c ⌃ M] {m}}

{ [c 7! M]� ⇤ }{ [c 7! M]� ⇤ C• ⇤ bCc}

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)
{ ⇤ bC[c 7! C(c)] {m}c}{ [c 7! M]� ⇤ C• ⇤ bC[c 7! C(c)] {m}c}

{c ⌃ M] {m}}

{ [c 7! M]� ⇤ }{ [c 7! M]� ⇤ C• ⇤ bCc}

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)
{ ⇤ bC[c 7! C(c)] {m}c}{ [c 7! M]� ⇤ C• ⇤ bC[c 7! C(c)] {m}c}

{c ⌃ M] {m}}

{ [c 7! M]� ⇤ }{ [c 7! M]� ⇤ C• ⇤ bCc}
C0

z }| {

Deriving a channel-local
specification

Invariant: the physical state is
authoritative ghost state  

9C. C• ⇤ bCc

Channel resource asserts ownership
of corresponding fragment: 

 
c ⌃ M , [c 7! M]�

{c ⌃ M}

send(c,m)
{ ⇤ bC[c 7! C(c)] {m}c}{ [c 7! M]� ⇤ C• ⇤ bC[c 7! C(c)] {m}c}

{c ⌃ M] {m}}

{ [c 7! M]� ⇤ }{ [c 7! M]� ⇤ C• ⇤ bCc}

{ [c 7! M] {m}]� ⇤ C 0• ⇤ bC 0c}

C0
z }| {

Deriving small-footprint
specifications

• Channel monoid encodes small-footprint channel resources

• Invariant relates ghost and physical state using authoritative
monoid to allow ownership of channel fragments

Recovering existing
reasoning techniques

• We saw how to recover reasoning principles from
Superficially Substructural Types and Fictional
Separation

• One can also recover reasoning principles from CaReSL
and iCAP through a encoding of STSs as monoids

Part 3
Logical atomicity

Logical atomicity
• In part 2 we used the invariant rule to  

access the shared physical resource 

• This rule only applies to atomic expressions

• Iris allows us to extend this reasoning  
principle to logically atomic code

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}

Logical atomicity
• In part 2 we used the invariant rule to  

access the shared physical resource 

• This rule only applies to atomic expressions

• Iris allows us to extend this reasoning  
principle to logically atomic code

{.R ⇤ P } e {.R ⇤Q}E e atomic

{ R
◆
⇤ P } e {Q}E]{◆}We can define logically atomic triples

hP i e hQi

Logical atomicity

• Example: a blocking receive operation  
 
 
 

• Spins (without side effects) until a msg is received

• The linearisation point is the first successful tryrecv

recv , rec recv(c). let v = tryrecv(c) in

case v of none => recv(c) | some(m) => m

Logical atomicity

• Ideas

• Let clients reason about the state immediately  
before and after the linearisation point

• Let clients open invariants around  
the linearisation point

Logical atomicity

• Ideas

• Let clients reason about the state immediately  
before and after the linearisation point

• Let clients open invariants around  
the linearisation point

Parameterise our
specifications with view shifts

Let view shifts open and
close invariants

Mask-changing view shifts
• Index view shifts with the set of invariants  

enabled before and after the view shift 
 

• Asserts

• that we can update the instrumented state from P to Q 
without changing the physical state

• where the invariants in are enabled before the view shift

• and the invariants in are enabled after the view shift 
 

P E1VE2 Q

E1
E2

Mask-changing view shifts
• We can change the invariant mask around  

atomic expressions, provided we restore it again 
 
 
 

• We can open and close invariants using view shifts 
 
 
 

e atomic

P {◆}V; P 0 {P 0} e {v. Q0}; 8v. Q0 ;V{◆} Q

{P } e {v. Q}{◆}

P
◆ {◆}V; .P P

◆
⇤ .P ;V{◆} >

Logical atomicity
• Idea: Let clients open and close invariants around

linearisation point and update instrumented state  
 
 

• This allows us to open invariants around logically atomic code  
 
 
 

h.R ⇤ P i e h.R ⇤QiE
h R

◆
⇤ P i e hQiE]{◆}

hP i e hQiE ⇡ 8Rp, Rq, ER. E \ ER = ; ^
(Rp WV�ER P) ^ (Q V�ER

Rq)

) {Rp} e {Rq}

Logical atomicity
• Idea: Let clients open and close invariants around

linearisation point and update instrumented state  
 
 

• This allows us to open invariants around logically atomic code  
 
 
 

h.R ⇤ P i e h.R ⇤QiE
h R

◆
⇤ P i e hQiE]{◆}

From the client’s point of view it  
looks like we have access to the
invariant R for the duration of e.

hP i e hQiE ⇡ 8Rp, Rq, ER. E \ ER = ; ^
(Rp WV�ER P) ^ (Q V�ER

Rq)

) {Rp} e {Rq}

Logical atomicity
• Idea: Let clients open and close invariants around

linearisation point and update instrumented state  
 
 

• This allows us to open invariants around logically atomic code  
 
 
 

h.R ⇤ P i e h.R ⇤QiE
h R

◆
⇤ P i e hQiE]{◆}

From the client’s point of view it  
looks like we have access to the
invariant R for the duration of e.

From the module’s point of view 
we only access the invariant in 

the linearisation point.

hP i e hQiE ⇡ 8Rp, Rq, ER. E \ ER = ; ^
(Rp WV�ER P) ^ (Q V�ER

Rq)

) {Rp} e {Rq}

Case study

λ-calculus with asynchronous message passing

small-footprint specifications

message passing blocking receive

mutable references as channels

elimination stack

physically  
atomic

logically  
atomic

Logical atomicity

• Logical atomicity is not built into Iris, but Iris is
sufficiently expressive that we can define it in Iris.

Conclusions

• Iris is

• simpler than previous logics

• can encode reasoning principles from previous logics

• and can do some fancy new stuff (logical atomicity)

• Monoids and invariants are all you need

