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Weak Memory: x86-TSO

» Each processor is equipped
with a FIFO buffer.

» Writes are queued in the [ %

buffer. é

» Threads first read from own i N

buffer before consulting main =
memory. L..

fust,

» Buffered writes are flushed
to main memory
non-deterministicly.

» CAS’ing flushes buffer.
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Weak behaviors on x86-TSO
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» Each thread has a subjective view of the state.
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Reasoning about TSO

» Can extend SL to TSO setting by internalizing buffers

» However, for most code we should not have to reason
about buffers!

» E.g., any TSO execution of a spin-lock well-synchronized
x86-program can be simulated by an SC machine.

- Owens, ECOOP'10.
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Reasoning about TSO

Goal

» A proof system that allows for explicitly reasoning about
buffers, when we have to, and allows for standard
separation logic reasoning when we do not.

» Reasoning about fine-grained concurrent data structures
and synchronization primitives will require low-level
reasoning about buffers, but reasoning about most
clients should not.
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Reasoning about TSO

Our solution

» A proof system with two interconnected separation logics

» The TSO logic for low-level reasoning about buffers

» The SC logic for high-level reasoning about clients

» Fiction of sequential consistency: Racy code with
weak behaviours may still provide an SC specification
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The SC logic

» In the SC logic we interpret the pre- and postcondition
from the perspective of the thread we are reasoning about

» x.f — v holds from the perspective of thread t if

» the most recent update to x.f in t's buffer is v
and no other threads have buffered updates to x.f

» or, x.f is v in main memory and there are
no buffered updates to x.f any store buffer
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The SC logic

» Usual separation logic assertions and proof rules

S-READ

[x.f = v] x.f [Ar. x.f = vxr=v]

S-WRITE

[x.f = ] x.f:=v [\ x.f—V]
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The SC logic

» Usual separation logic assertions and proof rules

S-READ

[x.f = v] x.f [Ar. x.f = vxr=v]

S-WRITE
[x.f— ] x.f:=v [ . xf V]

» However, to transfer a resource between two threads,
their perspective of the resource must match.
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The SC logic: Transferring resources

» This SC lock specification allows us transfer
resources using the resource invariant R:

[R] new Lock() [Ar. isLock(r,R)]
[isLock(this, R)] Lock.Acq() [A_. locked(this, R) * R)|
[locked(this, R) * R] Lock.Rel() [A_. emp]

isLock(x, R) < isLock(x, R) x isLock(x, R)

» We release and acquire ownership of R from the
perspective of the acquiring/releasing thread.
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The SC logic: Transferring resources

» To verify a lock implementation we have to prove the
implementation ensures the perspective of the releasing
and acquiring thread match.

» This requires low-level reasoning in the TSO logic.

» Once we have verified such a lock, the SC logic (roughly)
generalizes Concurrent SL to a TSO setting.

10/ 16



Transferring resources: A spin-lock

» This lock implementation ensures the perspectives match.

class Lock {
bool locked := false;

AcqO) A
let x = CAS(this.locked, true, false) in
if x then () else Acq()
}

Rel () {
this.locked := false
¥
}
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Transferring resources: A spin-lock

» This lock implementation ensures the perspectives match.

class Lock {
bool locked := false;

AcqO) A
let x = CAS(this.locked, true, false) in
if x then () else Acq()

}

Rel () | OnEe t.htlst buffe.red release
this.locked := false lnaeS{ 0 main mem°w'

} any prior buffered writes

} have already been flushed.
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The TSO logic

» A different set of Hoare triples

{At. P(t)} e {At. Ar. Q(t)(r)}

and non-standard assertions for reasoning about buffers

» Basic TSO assertions constructed through embeddings:

» [P] ~ P holds in main memory and there are no
buffered updates to the state asserted by P

» [P in t] ~ P holds from the perspective of thread t
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The TSO logic

Relating the SC and TSO logic

» Embedding allows us to move between logics:

[P] e [Ar. Q(r)]

(M. [Pint)} e (M Ar. [Q(r) in t]}

» and explain when we can transfer resources:

Vt. [R] = [R in t]
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The TSO logic

» An “until” operator to express ordering dependencies:

there exists an buffered update in
t's buffer such that P holds before
the update and @ holds once this
buffered update has been flushed

PU: Q

» The “until” operator describes buffered writes:

{At. [x.f — true| x [R in t]}
x.f 1= false
{At. A [x.f — true| U; [x.f — false x R]}
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Conclusion

» A higher-order separation logic for a language
with a TSO memory model that supports:

> low-level reasoning about synchronization primitives
and fine-grained concurrent data structures

» a fiction of sequential consistency that allows us to
give SC specifications to certain racy implementations
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Veritying the spin-lock

Acq

REL

lLocked(X, R,n) = [x.locked > true]
luniocked (X, R, n) =
[x.locked — false x R % ...| V
Jt. [x.locked +— true] U; [x.locked — false * R x ...]
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