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Weak Memory: x86-TSO

I Each processor is equipped
with a FIFO buffer.

I Writes are queued in the
buffer.

I Threads first read from own
buffer before consulting main
memory.

I Buffered writes are flushed
to main memory
non-deterministicly.

I CAS’ing flushes buffer.
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Weak behaviors on x86-TSO

I Each thread has a subjective view of the state.

3 / 16



Weak behaviors on x86-TSO

I Each thread has a subjective view of the state.

3 / 16



Weak behaviors on x86-TSO

I Each thread has a subjective view of the state.

3 / 16



Weak behaviors on x86-TSO

I Each thread has a subjective view of the state.

3 / 16



Reasoning about TSO

I Can extend SL to TSO setting by internalizing buffers

I However, for most code we should not have to reason
about buffers!

I E.g., any TSO execution of a spin-lock well-synchronized
x86-program can be simulated by an SC machine.

- Owens, ECOOP’10.
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Reasoning about TSO

Goal

I A proof system that allows for explicitly reasoning about
buffers, when we have to, and allows for standard
separation logic reasoning when we do not.

I Reasoning about fine-grained concurrent data structures
and synchronization primitives will require low-level
reasoning about buffers, but reasoning about most
clients should not.
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Reasoning about TSO

Our solution

I A proof system with two interconnected separation logics

I The TSO logic for low-level reasoning about buffers

I The SC logic for high-level reasoning about clients

I Fiction of sequential consistency: Racy code with
weak behaviours may still provide an SC specification
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The SC logic

I In the SC logic we interpret the pre- and postcondition
from the perspective of the thread we are reasoning about

I x .f 7→ v holds from the perspective of thread t if

I the most recent update to x .f in t’s buffer is v
and no other threads have buffered updates to x .f

I or, x .f is v in main memory and there are
no buffered updates to x .f any store buffer
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The SC logic

I Usual separation logic assertions and proof rules

[x .f 7→ v ] x .f [λr . x .f 7→ v ∗ r = v ]
S-Read

[x .f 7→ ] x .f := v [λ . x .f 7→ v ]
S-Write

I However, to transfer a resource between two threads,
their perspective of the resource must match.
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The SC logic: Transferring resources

I This SC lock specification allows us transfer
resources using the resource invariant R :

[R] new Lock() [λr . isLock(r ,R)]

[isLock(this,R)] Lock.Acq() [λ . locked(this,R) ∗ R]

[locked(this,R) ∗ R] Lock.Rel() [λ . emp]

isLock(x ,R)⇔ isLock(x ,R) ∗ isLock(x ,R)

I We release and acquire ownership of R from the
perspective of the acquiring/releasing thread.
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The SC logic: Transferring resources

I To verify a lock implementation we have to prove the
implementation ensures the perspective of the releasing
and acquiring thread match.

I This requires low-level reasoning in the TSO logic.

I Once we have verified such a lock, the SC logic (roughly)
generalizes Concurrent SL to a TSO setting.
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Transferring resources: A spin-lock

I This lock implementation ensures the perspectives match.

class Lock {

bool locked := false;

Acq() {

let x = CAS(this.locked , true , false) in

if x then () else Acq()

}

Rel() {

this.locked := false

}

}
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Once this buffered release
makes it to main memory,
any prior buffered writes

have already been flushed.
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The TSO logic

I A different set of Hoare triples

{λt. P(t)} e {λt. λr . Q(t)(r)}

and non-standard assertions for reasoning about buffers

I Basic TSO assertions constructed through embeddings:

I dPe ∼ P holds in main memory and there are no
buffered updates to the state asserted by P

I dP in te ∼ P holds from the perspective of thread t
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The TSO logic

Relating the SC and TSO logic

I Embedding allows us to move between logics:

[P] e [λr . Q(r)]

{λt. dP in te} e {λt. λr . dQ(r) in te}

I and explain when we can transfer resources:

∀t. dRe ⇒ dR in te
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The TSO logic

I An “until” operator to express ordering dependencies:

P Ut Q ∼

there exists an buffered update in
t’s buffer such that P holds before
the update and Q holds once this
buffered update has been flushed

I The “until” operator describes buffered writes:

{λt. dx .f 7→ truee ∗ dR in te}
x .f := false

{λt. λ . dx .f 7→ truee Ut dx .f 7→ false ∗ Re}
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Conclusion

I A higher-order separation logic for a language
with a TSO memory model that supports:

I low-level reasoning about synchronization primitives
and fine-grained concurrent data structures

I a fiction of sequential consistency that allows us to
give SC specifications to certain racy implementations
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Verifying the spin-lock

LockedUnlocked

Rel

Acq

ILocked(x ,R , n) = dx .locked 7→ truee
IUnlocked(x ,R , n) =

dx .locked 7→ false ∗ R ∗ ...e ∨
∃t. dx .locked 7→ truee Ut dx .locked 7→ false ∗ R ∗ ...e
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